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The eigenvalue spectra of cyclic solid-on-solid (CSOS) row transfer matrices are 
studied. An equivalence is established between the inversion identity and the 
Bethe ansatz functional equations and these equations are solved in the ther- 
modynamic limit by a Wiener-Hopf perturbation technique for the bands of 
leading excitations. The L-state CSOS model, with crossing parameter 2 = ~s/L, 
possesses a 2(L-s)-fold degenerate largest eigenvalue corresponding to the 
2(L--s) coexisting phases. The expressions for the largest eigenvalue and free 
energy coincide with those of the eight-vertex model. The string excitations for 
2s < L and 2s > L admit different classifications and are treated separately. The 
correlation length is calculated in both regimes, yielding the critical exponent 
v = L/2s, in agreement with the scaling relations. 

KEY WORDS: CSOS models; Bethe ansatz; correlation length; inversion 
identities. 

1. I N T R O D U C T I O N  

The cyclic so l id-on-sol id  (CSOS)  models  (1 3 )a re  a large family of solvable  
L-s ta te  I R F  lat t ice models  (4) with cross ing p a r a m e t e r  2 = 7rs/L, where L 
and  s = 1, 2,..., L - l  are  copr ime  integers. The  s implest  m e m b e r  of this 
family, given by L = 3, s = 2, and  2 = 2~/3, cor respnds  to the three-co lor ing  
problem.  (5~ M o r e  generally,  the cri t ical  CSOS models  realize the affine A 
series in the A - D - E  classification. (6 8) In par t icu lar ,  the ad jacency  graph,  
giving the a l lowed states or  heights  of  ne ighbor ing  spins, is the D y n k i n  
d i ag ram of the affine Lie a lgebra  A(cl~l. The free energy and  o rde r  
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parameters have been calculated by Pearce and Seaton (2) and yield the 
critical exponents 

2 - ~ = L / s  (1.1) 

flJ 4 s ( L - s ) '  flJ s ( L - s ) '  j= l , . . . ,  (1.2) 

where [ . . - ]  denotes the integer part. The central charge and operator 
content of the critical CSOS models have been obtained from finite-size 
corrections by Kim and Pearce. (9) The central charge is c =  1 and the 
dimensions of the scaling operators are of the form 

x = m2/2L(L  - s) + n2L(L - s)/8 (1.3) 

where m and n are integers and m is even for L even. Some of these are 
related to the order parameter critical exponents in the usual way by 

x = 2fl/(2 - c~) (1.4) 

The critical CSOS models are described by c = 1 rational conformal 
field theories (s'l~ with a radius of compactification given by 

= ~ L ( L  - s)/2, L odd (1.5) 
r 2 = p/2p' [ L ( L -  s)/8, L even 

where p and p' are coprime. The modular invariant partition function is 
Gaussian and can be decomposed as a sesquilinear form in chiral algebra 
characters(I~ 

1 ~" q(1/2)(m/2r+nr)Z~i(l/Z)(m/2 . . . . .  )2 (1.6) 
Z ( r )  - rl(q ) ~l(jl-- ) . . . . . .  

p - - i  p' 1 

a = O  b - - O  

+ Z x ,  ~ +ap'+ hp(q) Z f ,  x + av'- bp(C])] (1.7) 

where q is the modular parameter, 

r l (q )=q  1/24 f i  ( 1 - q ' )  (1.8) 
n = l  

is the Dedekind eta function, and the 

1 oo 

Zy ,k (q )  = ~l(q) n_~_~ q~+~(n+k/2~ (1.9) 
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are the level Jg" = L ( L  - s) chiral algebra characters. Precisely these charac- 
ters occur in the expressions for the CSOS local height probabilities. (2t A 
discussion of the operator algebra of these theories is given in ref. 11. 

In this paper we study the eigenvalue spectra of the row transfer 
matrices of the CSOS models. Such calculations are necessary to obtain 
correlation lengths and interfacial tensions. Various methods for calculating 
correlation lengths and interfacial tensions have been introduced. For the 
eight-vertex model, Baxter <12' 13,4) developed a Wiener-Hopf perturbation 
argument to calculate the bulk free energy and interracial tension. A related 
method of integral equations was subsequently used by Johnson et aL (~41 to 
calculate the correlation length. More recently, K1/imper and Zittartz ~5'16) 
have used the inversion identity (iv) along with some analyticity assump- 
tions to classify completely the eigenvalue spectra of both the eight-vertex 
and X X Z  models. The Wiener-Hopf perturbation method has also been 
applied to hard hexagons ~ and magnetic hard squares. (2~ This method 
gives the most complete information about the eigenvalues and is the 
method employed here. In this paper we confine ourselves to the calcula- 
tion of correlation lengths. The calculation of interfacial tensions will be 
taken up elsewhere. Our results for the correlation length give the critical 
exponent 

v =  L/2s (1.10) 

in agreement with the scaling relation 

2 - c ~ = d v  (1.11) 

Our calculations in solving the CSOS Bethe ansatz equations have been 
both guided and confirmed by numerical calculations on finite-size systems 
using methods developed in ref. 21. 

The layout of the paper is as follows. In Section 2, we describe the 
parametrization of the CSOS models and their row transfer matrices. The 
inversion identity and Bethe ansatz functional equations are also intro- 
duced in this section. The 2 ( L - s )  largest eigenvalues and the free energy 
are calculated in Section 3. The bands of leading excitations for 2s < L and 
2 s > L  are obtained in Sections 4 and 5, respectively. Formulas for the 
correlation length and its critical behavior are given in Section 6 and a 
concluding discussion is given in Section 7. Some miscellaneous technical 
derivations are collected in appendices. 

2. P R E L I M I N A R I E S  

The spins or heights of the CSOS model occupy the sites of a square 
lattice and take the integer values 0, 1,..., L -  1. We will denote spins by a, 
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b, c, d, etc. All heights are interpreted modulo L with heights of adjacent 
sites differing by _+ 1 rood L. In particular, the heights L and 0 are iden- 
tified so that the heights L -  1 and 0 are adjacent, as shown in Fig. 1. The 
constraint on neighboring heights results in the six allowed types of face or 
vertex configurations shown in Fig. 2. 

2.1. Parametrizat ion 

The parametrization (2) of the allowed CSOS face weights is given by 

c~a=W = W  = (2.1 
a a + 1 a -  1 01(2) 

(aa ) 
f l a = W  a + l  a 

= W (  _a a + l )  01(u)[O4(wa_l)O4(w~+:)] 1/2 
a 1 a = 01(2) 04(- ~ (2.2) 

7a = w ( a  a +  1)04(Wa-l-bl ) (2.3) 
a + l a 04(wa) 

a 1 a - 0---~-w-~)- (2.4) 

where 

and 

Fig. 1. 

w. = Wo + a2 (2.5) 

oO 

01(U ) = OI(U , p )  ----- 2p 1/4 sin u I-[ (1 - 2p 2" cos 2u + p4n)(1 - p2~) (2.6) 
n = l  

04(u)=O4(u,P)= FI (1--2P 2" lcos2u+p4n-2)(1--P 2n) (2.7) 

3 2 

L-2 

The Dynkin diagram of the affine Lie algebra A~ )_ :. This is the adjacency graph of 
the CSOS models. 
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a-1 ~ a a+l ~ a a ~ a-1 

a+l T a 

~ a  U'a I~a 
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Fig. 2. 

a a+l a ~ a - ] ~ ~  

a-1 ~ a a-1 ~ a 

13a "/a ga 

The six types of allowed face weights for the CSOS models and the corresponding 
vertex configurations. 

are standard elliptic theta functions (22) of nome p. The parameter Wo is a 
phase angle interpolating between heights, u is an anisotropy or spectral 
parameter, and p is a temperature-like variable. The crossing parameter 2 
is given by 

2 = ~s/L (2.8) 

where s = 1, 2,..., L -  1 is an integer coprime to L. The fundamental domain 
is given by 

O<~u<), 0~< Wo<~C, 0 < p < l  (2.9) 

In order to study the low-temperature limit, p-~  1, we define the 
elliptic function 

E(z ,x)= FI ( 1 - x  n l z ) ( 1 - x n z - 1 ) ( 1 - x , )  
/ l =  1 

= ~ ( - 1 ) " x  ~(n 1)/2z" (2.10) 
n =  --oo 

Useful properties of this function which we will use repeatedly in the 
following are 

E(z, x )= E(x/z, x )= -zE(1/z, x) (2.11) 

822/60/1-2-6 
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The conjugate modulus forms of the theta functions are 

01(U , p) ~- (~ /e )  1/2 exp[ - (u - u/2)2/e] E(e-2'~"/~, p,2) (2.12) 

04(u, p ) =  (~/e) 1/2 exp [ - (u -7 r /2 )z / e ]  E ( - e  2~u/~, p,2) (2.13) 

where the conjugate nome is given by 

p = exp(-e) ,  p' = exp( - 7~2/e) (2.14) 

Defining the variables 

w = e x p ( -  27~u/e), v = e x p ( -  2rCWo/~), x = e x p ( - r c 2 / L e )  (2.15) 

the face weights transform to (up to a proportionality constant which we 
neglect here) 

% = w(C-')/2L E(x2S/w) 
E(x2S) (2.16) 

~ a  ~-- X s w ( S  L)/2L E(w)[E(--I)X 2s(a+ 1)) E ( - - v x  2s("- 1))] 1/2 
E(x 28) E( - vx 28" ) (2.17) 

"~a = W(s -- L)/2L + sa/L + wo/rc E( - vx2S"w) 
E ( _ v x 2 , ,  ) (2.18) 

3,  = w (" + L)/XL- s~/L-- wo/,~ E ( -  vx2""/w) 
E( - vx  2"") (2.19) 

where 

E(z)  = Z(z ,  x 2L) (2.20) 

2.2. R o w  Transfer Matrix 

The row transfer matrix V for the CSOS models is defined via its 
elements as 

j = l  a j +  

where a = ( a l  ..... aN) and b = ( b l , . . .  , bN) are the configurations of two 
adjacent rows of heights. We impose periodic boundary conditions on the 
heights, i.e., aN+ 1 = a  1 and bN+ 1 = b  1. Following ref. 9, it is convenient to 
represent a given row configuration a by (al, (~), where ~ = (o-1 ..... o-N) and 
a ~ = a i + l - - a i =  +_1 is the difference of adjacent heights with _+(L-- l )  
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interpreted as T-1. Thus, ai represents the corresponding arrow configura- 
tion between adjacent heights, with o-i = 1 ( - 1 ) for an up (down) arrow on 
the ith vertical bond, The arrow configurations associated with the allowed 
face weights are shown in Fig. 2. 

Because of the six-vertex constraints, the number of up and down 
arrows in each row of vertical bonds is a conserved quantity and subse- 
quently V breaks up into disjoint sectors. Specifically, the operator Q 
defined by 

1 ~ ai I-I 6(aj, b~) (2.22) Q(al b) = 
~ = 1  j = l  

commutes with V. Hence its eigenvalues are good quantum numbers, 
labeling the sectors. Letting n be the number of down arrows in a row, the 
"charge" Q is given by 

N 

2 Q =  ~ a i = N - 2 n = T L  (2.23) 
i = 1  

where 7 = 0, _+ l .... is the winding number. It represents the number of times 
a given height configuration cycles or "winds" through all allowed heights. 
The allowed values of 7 are dependent on N and L: 

7 e 2 Z  

? s 2 Z + l  

for N even and L even 

for N even and L odd 

for N odd and L odd 

(2.24) 

For the remaining case, N odd and L even, there are no configurations 
compatible with the periodic boundary condition. 

For a given value of L, the number of possible configurations along a 
periodic row of N sites, X ( N ,  L), can be derived from the properties of the 
L x L adjacency matrix A. Its elements are defined by 

aa.d aroa ,owod.    bors 
Aab = otherwise 

(2.25) 

and reflect the adjacency condition on the nearest-neighbor heights. The 
number of allowed configurations is given by 

Y ( N ,  L ) = T r  A N = ~  A N (2.26) 
a 

The eigenvalues Aa of the adjacency matrix are given by 

A,, = 2 cos( 2~a/L ), a = 0, 1,..., L - l (2.27) 
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With this result we have 

L) = L T,* 
k = O  

(2.28) 

where (~) is the binomial coefficient and the starred sum is restricted to k 
satisfying N - 2 k = 0  (modL).  As an example, we find X ( 8 , 4 ) = 5 1 2 .  
Among these states, 280 states have winding number ? = 0  with the 
remaining states shared equally between 7=  +1. In contrast, for free 
boundary conditions on the heights, the sum in (2.28) is unconstrained and 
there are L .  2 u states. 

2.3. Low-Temperature Limit 

Much insight into the structure of the eigenvalue spectrum of the 
CSOS row transfer matrices is to be gained by considering the 
low-temperature limit. In this limit, x--+ 0 with w ~ 1, the vertex weights 
(2.16) (2.19) have the leading-order behavior 

O{ a = W ( L - s ) / 2 L  (2.29) 

/~a = 0 (2.30) 

7 a = w S / 2 L  + sa/L + wo/L - E,~/1~1 (2.31 ) 

(~ a = w s / 2 L  -- s a / L  wo/L  + [ s a / r  ] (2.32) 

where [ . . . ]  denotes the integer part. This simplification of the weights 
is indicative of the inherent "band" structure in the eigenvalue spectrum 
of the transfer matrix V. In the low-temperature limit, the only non- 
vanishing elements of V are those for which the adjacent rows of heights 
in (2.21) are related by a simple shift, that is, a - ( a 1  . . . . .  aN) and b =  
(aN, a l ,  a 2 , . . . ,  a N - -  1)" This gives a way of enumerating the number of levels 
in a given band. To make this clear, let us consider the case N =  6 with 
L =  3 and s =  1 or 2 as a specific example. For each of the JV'(6, 3 )=  60 
possible height configurations along a row, the corresponding element of 
the transfer matrix is a power of w, with the exponent labeling the band. 
The number of states in each band is indicated for this example in Table I. 

Unlike the eight-vertex model, which has t w o  numerically largest 
eigenvalues of opposite sign, the CSOS model has 2 ( L - s )  largest eigen- 
values corresponding to 2 ( L - s )  coexisting phases. All the other bands 
have of order N or more eigenvalues which become continuous in the ther- 
modynamic limit. The iaature of the 2 ( L - s )  ground states has been dis- 
cussed in ref. 2. For the same examples as in Table I, we show in Fig. 3 a 
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Tablel .  Eigenvalue Bands f o r N = 6  

Band L = 3 ,  s = l  L = 3 ,  s = 2  

1 4 2 
w 30 24 

w 2 24 30 
w 3 2 4 

physical picture of the ground states and the elementary excitations. In 
Fig. 3a, (i) and (ii) represent the two ground states for L =  3 and s = 2 ,  
while (iii) indicates a typical elementary excitation. Both the excitations in 
(iii) and (iv) belong to the leading band of excitations. We see that each 
of the excitations shown can occur in either of six places for each ground 
state, giving the total of 24 excitations in the w band. On the other hand, 
the situation becomes more complicated for L = 3 and s = 1, for which the 
four ground states are indicated in Fig. 3b. In this case the elementary 
excitation of (iii) can cross over to another of the ground-state configura- 
tions. This effective "tunneling" between ground states makes the counting 
of excitations more difficult. 

2.4. Inversion Identity and Bethe Ansatz 

The commuting row transfer matrices of solvable IRF models have 
been found to satisfy special functional equations given by the Bethe 
ansatz {23~ or inversion identities. ~24'17'25) The derivation (26) of the inversion 

0 

(i) (ii) (iii) (iv) 
(a) 

0 
2 

/ V V K  V V V  
0 / V V X  V V V  I 

(b)  

Fig. 3. Physical picture of the ground states of the CSOS model for N = 6 ,  L = 3  and 
(a) s = 2, (b) s = 1. (a)(iii) An elementary excitation; (a)(iv) A composite excitation. 
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identity for the CSOS models with periodic boundary conditions is given 
in Appendix A. The inversion identity takes the form 

V(u)V(u+)~)=~(2-u)~()t+u)I+(~(u)P(u) (2.33) 

where | is the identity matrix, P(u) is an auxiliary matrix that commutes 
with V(u), and IV(u), V(v)] = 0  for all u and v. The function ~b(u) is 
defined by 

IOn(u)] N (2.34) 
~(u) = L01(2)J 

The corresponding functional equation deriving from the Bethe ansatz is 

V(u)Q(u)=~)(2-u)Q(u+ 2)+~(u)Q(u-2) (2.35) 

where [Q(u), Q(v)] = 0  for all u and v and Q(u) is another family of 
matrices that commutes with V(u). These functional equations are formally 
identical to the functional equations satisfied by the row transfer matrix of 
the eight-vertex model. In the context of the CSOS models, however, these 
equations are subject to different supplementary conditions and admit 
more solutions corresponding to the larger dimension of the transfer 
matrix. 

The inversion identity (2.33) and the Bethe ansatz equation (2.35) 
each separately contain enough information to solve for the complete 
eigenvalue spectrum of the transfer matrix V(u). In this paper, we elect to 
calculate such quantities as the free energy and the correlation length via 
the more familiar Bethe ansatz equation (2.35). For all intents and pur- 
poses, however, the two equations are equivalent. Reshetikhin (2v) has given 
an analytic ansatz for obtaining Bethe ansatz equations from inversion 
identities. We apply this to the CSOS models in Appendix B. Conversely, 
assuming Q(u) is invertible, we can multiply V(u) and V(u + 2) as given by 
the Bethe ansatz equation (2.35). This yields a functional equation of the 
form of the inversion identity (2.33) with P(u) explicitly related to Q(u). 

Both the inversion identity and the Bethe ansatz equation are inde- 
pendent of the phase angle Wo. Since all the eigenvalues of V(u) occur 
among the solutions to these functional equations, this implies that, 
although the eigenvalues depend on the spectral parameter u, they must 
also be independent of Wo. Given the definitions of the vertex weights 
(2.16)-(2.19) and their explicit dependence on the variable w0, this is not 
at all obvious. However, this remarkable fact is indeed confirmed by direct 
numerical diagonalization of the transfer matrix. In contrast, the eigenvec- 
tors of V(u) are independent of u, but do depend on the phase angle Wo. 
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For convenience, we will assume in the sequel that the number of sites 
N is a multiple of L. The transfer matrix then satisfies the crossing and 
quasiperiodicity properties 

Vt(u) = V()o - u) (2.36) 

V(u + 7~) = ( - 1) x V(u) (2.37) 

V(b/~- ~ )  = ( - -p  1c--2iu)N c2ni2v(b/) (2.38) 

where r is related to the nome p by p = e'iL 
Introducing the variables 

u = �89 + v, s~ = �89 + vj (2.39) 

and factoring Q as in Appendix B, the Bethe ansatz equation for the eigen- 
values of V becomes 

V ( v ) = ~ ( ~ -  ) ~_,~ O'(v-vj+)~ (~ I n 0 1 ( v - v j - 2 )  
v J O~(v- v;) + 0 + v~, i=Fll 0 ~ 7 ~ )  (2.40) 

Here the equations determining the zeros v /of  Q take the form 

~b(2/2 - vk) f i  O,(vk - v j -  2) 
~b(2/2 + re) j=,  Ol(Vk--Vj+2)' k=l,. . . ,n (2.41) 

To use these equations in the low-temperature ordered limit, we again need 
to apply the conjugate modulus transformations. Defining the variables 

z = e -2~/~, Z/= e 2~j/~ (2.42) 

we obtain the low-temperature form of the Bethe ansatz equations 

L E I ~ A  jL~ ' E(z/z) 

(24 ) 
L E ( - C ~ J  j=~ E(z/zb J 

with 

F g l1  n 

,, +~L-s~ JW/~W N 1)" ~ - L ~ / ~  E(x2Szj/zk) 
z~ L E(x~zk) J + ( -- [~ zj E(xZ~.z,,/zj) - 0 (2.44) j=l 

for k = 1,..., n. These are our key equations. 

the 
A useful consequence of the crossing property (2.36) is that it reflects 
crossing symmetry of the eigenspectrum. In terms of the variables 
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defined in (2.39) and (2.42), we have V t ( z ) = V ( 1 / z ) ,  implying that the 
eigenspectrum for [z[ < 1 is related by complex conjugation to that for 
Iz[ > 1. One further point also of use in the following is that at w =  1 
(u--0) the transfer matrix V reduces to a shift operator with eigenvalues 
the Nth roots of unity, as can readily be seen from the definition of the 
vertex weights in (2.1)-(2.4). 

3. L A R G E S T  E I G E N V A L U E  

In this section we evaluate the largest eigenvalue of the row transfer 
matrix V in the thermodynamic limit by applying the perturbation techni- 
que first developed by Baxter for the eight-vertex model. (12'4) We begin 
by considering the low-temperature limit x--+ 0 where the Bethe ansatz 
equations (2.44) reduce to 

z n +  ( - 1 )  n ( z l . . .  Zo)(2~-L)/L = 0 (3.1) 

with z =-zk, k = 1,..., n. To be compatible with the ground states, we have 
chosen N to be even. The largest eigenvalues then occur in the charge 
Q--0  sector, i.e., with ~ = 0 and n = N/2.  Arguing as in Baxter, we set 

n 

I~ ( z - z j ) - l . h . s .  of (3.1) (3.2) 
j = l  

Thus we must have 

( Z  1 . . .  Zn ) = (Z1  . . ,  Zn)(2s-  L)/L (3.3) 

and subsequently 

( z l " "  zn) 2(c ,)/L = 1 (3.4) 

Hence (3.1) admits 2 ( L - s )  solutions consisting of the n roots of the 
equations 

Zn+(_ l )ne~ i k (2~  , L)/(C ")=0, k = 0 ,  1 ..... 2 ( L - s ) - I  (3.5) 

In this limit the eigenvalue expression (2.43) reduces to 

Vo(z) = ( - )  ~ l " ( _ z j / z + / =  i ~ z - ~ s  j (3.6) 

which, from (3.1), (3.2), and (3.4), yields 

Vo(z) = +1 (3.7) 
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each sign occurring L - s  times. This gives the 2 ( L -  s) largest eigenvalues, 
each corresponding to a choice of the phase factor in (3.5). 

3.1. Per tu rba t ion  A r g u m e n t  

We now consider the perturbation expansion about the low-tem- 
perature solution for large N and x < 1. To do this we define the func- 
tions(~2, 4) 

A(z)= f i  (i--x2Lkz) N, B(1/z):  [] (1-- x2Lk/z) N (3.8) 
k ~ 0  k = l  

F(z)= ~I f i  (1--X2LkZ/Zj), G(1/z)= f i  ~ (1--XzLkZj/Z) (3.9) 
j = l  k = O  . j = l  k = l  

Here the functions A(z) and B(1/z) are known and F(z) and G(1/z), which 
depend on the zeros zj, are to be determined. With these definitions the 
eigenvalue equation (2.43) can be written as 

Vo(z )  : v(o')(z) + V(o~)(z) (3.10) 

where we have set 

and 

V(oO(Z) -- ( -  1)" (zl ... z,) (L-s)/L 

A(x zc- "z) B( 1/x 2L- "z) F(x2Sz) G(1/x2Sz) 
• 

A(x 2") B( I/x 2s) F(x2Lz) G( I/x2Lz) (3.ll) 

v g ) ( z ) :  ( -  1)" (Zl . .  . z . )  ( , -  L)iL 

A(xSz) B(1/xSz) F(x 2(L- S)z) G(1/x 2(L ")z) 
x A(x 2s) B(1/x 2S) F(z) G(l/z) (3.12) 

Depending on the sign of v, one of the two terms becomes exponentially 
small in the thermodynamic limit. Neglecting these terms in the ther- 
modynamic limit yields 

Vo(l)(z), for z >  1 
Vo(z)= V~or)(z) ' for z < l  (3.13) 

On the other hand, the Bethe ansatz equations (2.44) are 

z n B(1/X2L Sz)G(l/x2Sz) 
B(1/x'z) G( 1/x 2~ -')z) 

+ ( - i)" (z~... z,,) (2s- ~)/~ A (xSz) F(x 2(L- ")z) _ 0 
A(x 2~- "z) F(x~'z) 

(3.14) 
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At this point we write 

(I  ( z -z j ) - l .h . s .  of (3.14) (3.15) 
j = l  

Thus, in the region [z] < 1 we have, to exponentially small terms [e.g., 
0(6 N) with 0 ~< 6 < 1 ], 

A(x'z) F(x2(L S>z)- (I  ( z )  F(z) 
- 1 , ~  --F(xZLz ) A(x2L=sz) F(x2"z) j=l (3.16) 

while for [z] > 1 

" ( ~ ) = G ( 1 / x 2 c z )  B(1/x2L-'z) G(1/xZ'z) ~=~ 1 - a(1/z) 
B(1/xSz) G(1/x 2(L ")z) =j= 

(3.17) 

These last two equations can be solved by recursion, (12) with result 

F{z)= ~ A(x(4m+l)sz) (3.18) 
m=O A(x(4m+3)s2) 

G -- JJo O(x(4m+3)S/z) (3.19) 

Substitution of these results into (3.11) and (3.12) then gives the largest 
eigenvalue in the form 

V(oO(Z) = ( - 1)" (zl " "" Zn) (L- s)/L A(xzc-'z) B(1/x 2L ~z) 
A(x 2s) B(1/x 2s ) 

• f i  A(x(4m+3)Sz)A(x(4m+3)s+2Lz)B(x (4m 1)S/z )B(x(4m+3)s-2L/z) 
m=O A(X(4m+ 5)Sz) A(x(4m+ 1)s+ 2Lz) B(X(4rn+ l)s/z) B(x(4m+ l)s 2L/Z) (3.20) 

VO~r)(Z) = ( - -  1 ) "  (Zl " " " Z.) (s- L~/L A(x~z) 8(1/x~z) 
A(x  2s) B(1/x  2" ) 

o o  X H A(x(4m-1)s+2Lz) A(x(4m+3)Sz) B(x(4m+3)s--2L/z) B(X(4m+3)s/z) 
m =0 A(x(4m + 1)s+ 2L2) A(x(4m + l ) sz )  B(x(4m + 5)s 2L/z ) B(X(4m + 1)S/z ) (3.21) 

The next step in the argument is to realize that these last two rather cum- 
bersome expressions can be written in a far simpler form. Some details of 
the proofs of the required identities are described in Appendix C. The final 
result is valid for both z < 1 and z > 1 provided the roots zj still satisfy the 
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condition (3.4), which was obtained in the low-temperature limit. However, 
this result can be seen to hold more generally from the identification (3.15) 
and by setting z = 0  in (3.14). Explicitly, we thus have for the free energy 
per site 

lim N ~logVo(w)=SP(w, ,s X ~ , X 2L) = log J ( w ,  x 2", X 2L) (3.22) 
N~oO 

where w = xSz, 

y(w, y, p)= 
(1 

,,=1 n(1 -p")(1 + y") 

and 

(3.23) 

with 

Y-(w, y, p) = exp 5~(w, y, p) 

-- E " ~ P ) , ~ I  n=l L i l ~ - - ~ - ~ ~  

X ( l _ _ p m - l y 2 n w  1)(l__pmy2n-2 w 1) ] (3.24) 

Q(z)= [I (1-z") (3.25) 
n=l 

The function J is precisely the function appearing in the expression for the 
largest eigenvalue of the eight-vertex model. (1a'4) In particular, we note that 
(3.22) is the result already obtained in ref. 2 using the "inversion relation 
trick," which relies on certain analyticity assumptions which cannot be 
established a priori. 

4. LEADING E X C I T A T I O N S  ( 2 s < L )  

In this and the following section we calculate the excitation spectrum 
of the CSOS row transfer matrices. As for the eight-vertex model, (14 16~ we 
find that the nature of the excitations differs in two fundamental regimes 
determined by the inequalities 2s < L and 2s > L. In this section we con- 
sider the case 2s < L. In this case, we find the band of next-largest eigen- 
values is composed of elementary 1-string and 2-string excitations. 
Throughout  this and the remaining sections we assume that N is even and 
the winding number is 7 = 0. 
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4.1. 1-Strings 

As for the calculat ion of the largest eigenvalue, it is instructive to 
begin with the low- tempera ture  limit. Fo r  each of the largest eigenvalues, 
we saw that  the n = N/2 zeros lie on the unit circle. Fo r  the 1-string excita- 
tions, one of the zeros is excited to the circle Izl = x L. We write the zeros 
a s  

zj=aj for j =  1,..., n -  1 (4.1) 

z,, = bx L (4.2) 

with lal ~ Ibl ~ 1. The Bethe ansatz  equat ions (2.44) can then be written 

an+,FE(xS/a)] N 
LE(x'a) J + ( - 1 ) n + l b ( A n  lb)(2s C)/L 

E(x r 2Sa/b) ,~fil E(xZ~.aj/a) 
x E(xL 2Sb/a)j=l E(x2~a/aj) 0 (4.3) 

[ E(xC-Sb) ] N b)2"/L~FI 1E(xL 2"b/aj) (4.4) 
~ j : (An_, E(xL_ 2+.aj/b ) 

j = l  

Here we have set a = ak, k = 1 ..... n -  1, and defined 

Am = f i  aj (4.5) 
j = l  

In the low- tempera ture  limit, x - - ,  0, we have 

a n+l+ ( -  1) n+l (An_lb) 2s/LAn~ = 0  (4.6) 

(A. ib) 2s/L= 1 (4.7) 

Combin ing  these equat ions  thus yields 

a " + l +  ( -  1) "+t A~-~I=0 (4.8) 

f rom which we readily establish 
N A , _  ~ = 1 (4.9) 

N o w  (4.8) is to be solved for n - 1 "unknowns, yet the equat ion  is of  order  
n + 1. We see then there are effectively the two zeros, an and an+l ,  left 
o v e r - - t h e y  will turn out  to be "holes." Fo r  this case we write 

n + l  

l-~ (a--aj)=l.h.s. of (4.8) (4.10) 
j 1 
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which  y ie lds  A , ~ + I = A ~ - i l ,  i.e., the  ho les  a ,  a n d  a n + l  m u s t  sa t isfy  the  
c o n s t r a i n t  

a,,an+~ = A~-21 (4.11) 

As  a t yp i ca l  e x a m p l e ,  let  us c o n s i d e r  the  va lues  L = 3 a n d  s = 1 wi th  N = 6, 
i.e., wi th  n = 3 zeros .  F r o m  (4.8) a n d  (4.9), we have  

a 4 + A f  1 = 0  wi th  A2 = •  e +~i/3, e .2~i/3 (4.12) 

T h e  p o s s i b l e  va lues  of  b fo l low f rom (4.7), wh ich  is s i m p l y  A 2 b =  +_1. 
Fina l ly ,  f r om (4.1 1) we select  the  s o l u t i o n s  a j  a n d  a2 of  (4.12) wi th  a3 a n d  
a4 sa t i s fy ing  a3a 4 = A 2  2. In  this  w a y  we a r r ive  a t  the  18 a l l o w e d  con f igu ra -  
t ions  s h o w n  in Fig .  4. In  each  case,  the  e ig e n va lue  lies in the  w b a n d ,  t h a t  
is, it  sat isf ies 

[ Vl(z)[  = w (4.13) 

T o  p r o c e e d  wi th  the  p e r t u r b a t i o n  a r g u m e n t ,  we def ine  the  func t ions  

(a) 

(b) 

(c) 

(d) + +  
Fig. 4. Schematic representation of the 1-string Bethe ansatz zeros in the low-temperature 
limit for N=6,  L=3 ,  and s=2 ,  with (a) A2= 1, (b) A2=expOzi/3), (c) A2=exp(2M/3), (d) 
A 2 = -1 .  Here A2 is the product of the two zeros on the unit (outer) circle on which the holes 
are denoted by open circles. The inner circle is of radius Izl = x L. The distribution of zeros for 
the remaining cases, A2=exp(-2~zi/3) and A2=exp(-~zi/3), are conjugate to (c) and (b), 
respectively. 
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A(z) and B(1/z) as in (3.8). However,  the functions F(z) and G(l/z) in (3.9) 
are to be replaced by 

n+~ f i  ,~+~ 1~ I g,(z) -~ [I  (1 - xZL'~z/aj), GI(1/z) = l-I (1 - xZLka/z) 
j = l  k = 0  j - 1  k = l  

(4.14) 
In addition, we define the extra functions 

X(z)--  [I  (1--X2Lkz/b), Y(1/z)= [I  (1--x2Ckb/z) (4.15t 
k = O  k = l  

n + l  

R~(~) = [ I  (1--x2Lk~/a 3,  
j = n  k ~ O  

n+x  
Sl(1/z) = I1 (1 - x2L~'a/z) 

j = n  k ~ l  
(4.16) 

+ ( -  1) n+x b(A,,_lb)(2~-L)/L 

A(x~a) Fl(x2(L-s)a) X(x L- 2~a) R~(x2~a) 
x A(x2L_Sa ) Fl(X2sa) X(xL+2~a ) R1(x2(L_s)a) = 0 (4.17) 

and 

( A,~ -1 b )2~/L = A (x L - Sb ) B( 1/x L ~b ) 
A ( x  ~ + sb ) a (1 /x  L + sb ) 

Fl(xL + 2~b ) Gl(1/xL + 2~b ) R l (xL-  2~b ) Sl(1/x L 2Sb ) 
• F , ( x L _ % )  Gl(1/xL_Z~b) R~(xL+Zsb) S~(1/xL+Z~b) (4.18) 

We begin by considering (4.17). As in (4.10), we write 

n + l  

IF[ (a - aj) = 1.h.s. of (4.17) (4.19) 
j = l  

Equat ing the dominant  terms in this equat ion for la[ < 1 and lal > 1 yields 

A(x~a) Fl(X 2(L- S)a) X(x L- 2~a) R~(xZ~a) 
A(x2Z-Sa) Fl(x2Sa) X(xL + 2~a) Rl(xZ(L-~)a) 

= 1 -- -- (4.20) 
j =  1 FI(x2La) 

a" + i B(1/x 2L- Sa) G l(1/x2sa) Y(1/x L + 2Sa) Sl(1/x 2(L- S)a) 

B(1/x~a) G I (1/x 2(L S)a) Y(1/x L - 2Sa) S1 (1/x2Sa) 

Like the functions A(z) and B(1/z), these latter functions are treated as 
known, and the functions Fl(z) and G~(1/z) are to be determined. With 
these definitions, the crucial equat ions (4.3) and (4.4) can be written as 
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and 

B(1/x 2c- Sa) G l(1/x2sa) Y(1/x L + 2~a) S,(1/x 2(c-')a) 
B(1/x'a) Gl(1/x 2(L ")a) Y(1/xC- 2~a) Sl(1/x2"a) 

' (  ~ )  Gl(l/x2ra) 
="12I 1 -  (4.21) 

j=l G,(1/a) 

In order to solve these relations for F~(a) and Gl(1/a), we introduce the 
functions 

e l ( a  ) {l_']= a l ( l /a )  
~',(a)--F~(x2(L_,)a), 81 \aJ G,(1/x2(L-S)a) (4.22) 

and write (4.20) and (4.21) in the form 

~'1(a) - A(x~a) X(XL- 2Sa) Rl(xZsa) 1 
A(x2L-sa) X( xL + 2Sa) /~1 ( N2(L S)a) FI (x2sa) (4.23) 

(~) B(xS/a) y(x4s-L/a)Sl(1/a) 1 
81 --B(x 3" 2C/a) Y(x L/a) Sl(x4s-2L/a) ~l(1/x2Sa) (4.24) 

These equations can then be solved by recursion, with result 

El(a )  = 
X(x r 2Sa) ~ m(x(4m+l)Sa)A(x(4m+l)s+2La) 

ml]o A(x(4m+ 3)Sa)A(x(4m-1)s + 2L a 

R I(X (4m + 2)Sa) R I(x 4ms + 2La) 
x Rl(X(4m+4)Sa)Rl(X (4m 2)s+2La) (4.25) 

and 

(~) _ y(x2~ C/a ) B(x(4m+ 1)S/a ) B(x(4m+ s)s-2r/a ) 
f i  + S)S/a ) B(x(4m+3)s-2r/a ) 81 

Y(x-r/a) m-O B( x(4m 

Sl(x4,,,S/a) Sl(X(4m + 6)s- 2r/a ) 
X Sl(X(4m + 2)S/a ) Sl(X(am+n)s- 2L/a ) (4.26) 

From (4.22) we thus obtain the solutions 

Fl(a) = f i  FI(x 2,~(r ")a) 
n=O 

Gl(1/a)= [I GI(I/X2n(L S)a) 
n=O 

(4.27) 

(4.28) 
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Turning to the eigenvalue expression (2.43), the analogous result to 
(3.13) for Vo(z) is 

~V~i~(z ) for z >  1 (4.29) 
V,(z) = (V~ ~(z) for z < 1 

with 

V}tl(z)- - - ( - 1 ) ~ ( A .  lb ) (L ,)/L (X~z) A(x2L-Sz) B(1/x2L Sz) 
A(x ~') B(1/x ~') 

X(x 2"+ Lz) Y(1/x 2s+ ~z) 
• 

X(x~z) Y(1/xLz) 

RI(x2Lz) SI(1/x2Lz) Fl(x2"z) Gl(1/x2~z) 
x RI(x2~z) SI(1/x2~z) FI(x2Lz) GI(1/X2LZ) (4.30) 

and 

(~_) A(x'z) B(1/x~z) vlr)(z)~_ __(__ |)n (mn_lb)(s-L)/L A(x2~)B(1/x2") 

X(x ~ ~Sz) I~(1/xL-~,z) 
X(xLz) Y(1/xLz) 

Rl(z) Sl(1/z) FI(x2(L-~)z) Gt(1/x2(L-~)Z) 
X RI(x2( L ~)z) SI(I/x 2(L ")z)Fl(z) G~(1/z) (4.31) 

Consider first the result (4.30) for V~l(z), into which we substitute the solu- 
tions (4.27) and (4.28). It is straightforward to establish, along the lines 
discussed in Appendix C, that the contribution of the A and B functions is 
the same as that for the largest eigenvalue Vo(z). This leaves the result 

V~'>(z) 
Vo(z) 

= - ( A n - b )  (L ~)/L(-~) RI(X2Lz) SI(1/xzLz)X(xzs+Lz) Y(1/X2s+LZ) 
Rl(X2,) Sl(1/x 2s) X(xLz) Y(1/xLz) 

X(x2n(L- s) + rz) X(x~.(~-,~ + 3Lz) 
x [] +2,+Lz ) X(x2n(L_~ r , ~ z )  ,, -- o X( x2"(L- ~1 

y(1/x2n(L- s)+ Lz) y(1/x2,(L- ,) + 3Lz) 
X y(1/x2m( c s)+2~+Lz) y(1/xZn(L-,~ 2,+3LZ) 
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R 1 (X (4rn + 4)s + 2n(L s)z ) e l  (x(4m + 4)s + 2,,,(L s) -t- 2Lz) 

X f i  Rl(X(4m+6)s+2n(L_s)z )Rl(x4ms+2n(L s)+2Lz ) 
rn=O 
R1 (x(4m - 2)s + 2n(L -s)+ 4Lz) S1 ( x  (4rn -- 2 ) s -  2n(L --S)/z) 

• 
R ~ (x 4~s + ~ - "~ + ~ z )  S~ ( x  ~=" - ~ - S~/z) 

S l ( X ( 4 m + 4 ) s -  2n( L s)--2L/z ) S l ( X ( 4 m + 4 ) s -  2n(L-s) 4L/z ) 

;K S I ( X 4 m s - 2 n ( L - s ) - 2 L / z )  SI(X(4m+6)s  2~(L "1 4L/z ) (4.32) 

This expression can in turn be simplified. Again proceeding 
Appendix C, we arrive at the considerably simplified result for z > 1, 

as in 

V~~ (An_~b)(L-,)/L{X~Z) E(an/Z, x4S)E(a~+l/Z_2,x4S_ ~) 
(4.33) Vo(z ) \ b J E(x2Sz/a~, x4") E(x2Xz/a~ +1, x 4") 

On the other hand, the result obtained by simplifying the expression (4.31) 
for z < 1 is 

V} ~)(z) (A~_ lb ) ( , -L ) / c (x~)  E(z/a~,x4S) E(z/a,,+ 1,x4s) 
Vo(z) E(x2Sz/a,, ~ n ~ _ ~ x 4 S  ) (4.34) 

which is compatible with (4.33) provided 

b 2 
(An_ ~b) 2~L- s)/c _ (4.35) 

a;g an + 1 

However, this result can be seen to follow from (4.17) and (4.19) with 
a = 0 .  

The final result for the 1-string eigenvalues can be written in the form 

Vl(w) w E(xSan/w, x 4s) E(xSa,7+ l/W, x 4s) 
Vo(w) = +(anan+~)l/~E(x,w/a,,x4~.)E(x~w/an+l,x4~) (4.36) 

which is explicitly dependent on the location of the holes an and a~+~, 
which in turn are implicitly dependent on the location of the excitation b. 
In addition, we also notice that elliptic functions now appear with the new 
nome x 4~. 

Up to this point, we have not made explicit use of the second Bethe 
ansatz equation (4.18). In the low-temperature limit the corresponding 
equation (4.7) gave solutions for the location b of the excitations. In the 
general case, substitution of the solutions (4.27) and (4.28) into (4.18) 
yields, after simplification, the simple result 

(An- b) 2s/L = E(xLan/b, x2~L s)) E(XCan+ l/b, x 2~L- ~)) (4.37) 
1 E(xLb/a,,, x2(L-s)) E(xLb/a,, + l, x2(L --s)) 

822/60/1-2-7 
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Notice that the excitations b depend on the location of the two holes and 
that another new nome x 2(L-=) has appeared. In a similar manner, the first 
Bethe ansatz equation (4.17) simplifies to 

an+ l [E(xS /a '  x4s ) lN  )n+ L)/L E(xCb/a, x2L - 2s) 

L ~ x--~=) j + ( - 1  'b(A,~_tb) (2= E(xLa/b, xZL_Z, ) 

n~iI E(xaS, x2L-2s ) J- (a_ x2 L_ ) 
x x2L-2=) , x2,, 2, = 0  (4.38) 

j = i E(x2=aJ a, aj 

where the function 9--(w, y, p) is defined in (3.24). Multiplying the two 
equations for the holes together and using (4.37) leads to the result 

I 1 E(x=an, x 4=) E(xSa= + l_,x 4~) 1 N 
(a=an+ ~)1/2 E(xS/a=, x4=) E(x=/a,+ 1, x4=)J = 1 

(4.39) 

where we have made use of the identity (2~ 

( 1 )  E(yw, p) E(y/w, p) 
Y(w,  y, p) ~-- ' Y' P = E(y, p)2 (4.40) 

The result (4.39) ensures that the 1-string eigenvalues (4.36) are Nth  roots 
of unity at w = 1, where the transfer matrix reduces to the shift operator. 

4.2. 2-Strings 

In this section we consider excitations for which two zeros depart from 
the unit circle. These zeros are excited to the circles Iz[ = x -= and {zl = x s. 
We denote the zeros by 

zj=aj for j =  1,..., n - 2  

z,, _ 1 = b2x-S (4.41) 

Z n = hi xs 

with lal ~ Ibll ~ tb2] ~ 1. With these substitutions, the Bethe ansatz equa- 
tions (2.44) are 

, ,  [E(x'/a)] x 
a L ~ J  + ( -  1)" (A,_  2blb2) '2=- L)/c 

E(x=bz/a) E(x3,bl/a) ~ 2  E(x2,aja) 
• E(x~.a/bl) E(x3=a/b2) .~ E(xZ=a/aj) = 0 (4.42) j= l  
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bTx ns kE(x2Sbl)j + ( - 1 ) "  (An 2b~b2) (2~-L)/L 

E(bz/bl) n2,} E(xSaj/b~) 
• E(x4 bl/b2 ) }!_ 0 (4.43t 

b'~x-"S U ~ J + ( -1  (An_zb~b2) (2~ 

E(x4~bl/bz) ,~[2 E(x3~ay/b2) 
x E(b2/bl) j~l E(x'b2/aj) 0 (4.44) 

with a --- ag, k = 1,..., n - 2. 
Keeping the leading terms in the low-temperature limit, x ~ 0, we find 

that these equations reduce to 

a~+ ( - 1 ) "  (A, 2blb2)(2s-L)/L=o (4.45) 

b~x ~, 1_~1 +(_l),,(A,_2b~b2)(2, L~/L 1 (4.46) 

b~ (1 - b~)(1  - b2)N+ (--1)~ (An_2b~ b2) (2s c)/c x,,S = 0 (4.47) 

From the last two equations we expect that bl ~ b2 ~ b. This relation in fact 
holds if either x ~ 0 or N ~  oQ. Elimination of the term (1 - b 2 / b l )  in these 
two equations gives a single equation for b. This indicates the appropriate 
way to treat the general equations to obtain two equations, one for a and 
one for b. Eliminating the common factor E(b2/ba)/E(x4*bl/b2) in (4.43) 
and (4.44) yields 

(b2~ n E E x 2s N 

~i~ 2 E(x'aJbl ) E(x3~a/b2) • 
/=1 E(x'b2/ay) E(x3"b~/aj) (4.48) 

In the low-temperature limit, x ~ O, this gives 

( ~ ) "  = (An_2bab2)a(2, L)/L (1\1 -blj-b2~N (4.49) 

which, on setting b~ = b2 = b, leads to 

(A,, 262)  2 ( 2 s - L ) / L =  1 (4.50) 
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Combining (4.45) and (4.50), we obtain 

a " + ( - 1 ) " ( •  (4.51) 

where in addition 

AN-2 = 1 (4.52) 

Setting 

f i  ( a - a j ) = l . h . s .  of (4.51) (4.53) 
j = l  

yields A,, = ( _+ 1), so that the two holes an_ ~ and a~ must satisfy 

An 2an_la~ = -I-1 (4.54) 

As for the 1-string case, we have to check the consistency of these 
equations. As an example, we return to the values L = 3, s = 1, N = 2n = 6 
discussed in Section 4.1 for the 1-strings. From (4.51) and (4.52), we have 

a 3 - ( _ + l ) = 0  with A I =  +_l,e+-~i/3, e -+2~/3 (4.55) 

The possible values of b follow from (4.50), which is simply Alb 2= --kl. 
Finally, in this example the constraint (4.54) is simply Alaza3= _+1 with 
A1 = a l .  The 12 possible 2-string excitations are shown in Fig. 5. Each 
eigenvalue lies in the w band, that is, each eigenvalue satisfies 

I V2(z)l = w (4.56) 

Along with the 18 1-string eigenvalues, we thus have 12 2-string eigen- 
values, for a total of 30 eigenvalues. This exhausts the leading w band of 
eigenvalues. 

To carry out the perturbation argument, the functions A(z), B(1/z), 
F(z), and G(1/z) are defined as in (3.8) and (3.9). Because we treat the ther- 
modynamic limit, it suffices to impose the relation bl = b2 = b, which holds 
up to exponentially small corrections for large N. We can thus use the 
previous definitions (4.15) of the functions J((z) and Y(1/z). However, the 
functions Rl(z) and Sl(1/z) in (4.16) are replaced by 

j ~ n - - 1  k ~ O  j ~ n - - 1  k = l  
(4.57) 
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W i t h  t h e s e  d e f i n i t i o n s ,  ( 4 . 4 2 )  c a n  b e  w r i t t e n  as  

B(1/x2L-'a) G(1/x2Sa) Y(1/x'a) Y(1/x3Sa) S2( l/x2(L-s)a) 
( l  n 

101 

B(1/xSa) G(1/x 2(L ~)a) Y(1/x2L-~a) Y(1/x 2c 3"a) S2(1/x2Sa) 

+ ( - 1 ) "  (A._2b2) (2s-L)/L 

A(x'a) F(x2(L-s)a) X(x2L-sa) X ( X  2 / ' -  3Sa) Ra(x2Sa) 
x = 0  A(x2L-~a) F(x2Sa) X(xSa) g(x3Sa) R2(x2(C-S)a) 

T h i s  t i m e  w e  w r i t e  

(4.58) 

h(a-aj)=l.h.s, o f  ( 4 . 5 8 )  
j = l  

A g a i n  e q u a t i n g  d o m i n a n t  t e r m s  f o r  ]a[ < 1 a n d  lap > 1, w e  o b t a i n  

A(x'a) F(x2(C-s)a) X(xZC-'a) X(x 2c- 3Sa) R2(xZsa) 
A(xZL-'a) f(x2Sa) .3f(xSa) g(x3Sa) R2(x 2(L -S)a) 

j=l = F(x2La) 

( 4 . 5 9 )  

( 4 . 6 0 )  

(a) (b) (c) (d) 

Fig. 5. Schematic representation of the 2-string Bethe ansatz zeros in the low-temperature 
limit for N = 6 ,  L = 3 ,  and s = 2 ,  with (a) A 1 = 1, (b) A 1 = exp0zi/3), (c) A 1 = exp(2)zi/3), (d) 
AI = -1 .  Here A 1 = a I is the zero on the unit (middle) circle on which the holes are denoted 
by open circles. The inner circle is of radius Izl = x s and the outer circle is of radius Izt = x-s.  
The distribution of zeros for the remaining cases, AI = exp ( -2~ i / 3 )  and AI = exp(-toi l3) ,  are 
conjugate to (c) and (b), respectively. 
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and 
B(1/x 2c ~'a) G(1/xZSa) Y(1/x'a) Y(1/x3Sa) S2(1/x 2~c S~a) 

B(1/xSa) G(1/x2(C-~la) y(1/xZZ-Sa) y(1/x 2c 3"a) S2(1/xZsa) 

,461, 
:'~ 1 G(1/a) 

To solve these equations, we introduce the functions 

F(a) ~ ( ! )  G(1/a) (4.62) 
T'(a) - f(x2(L_ ~)a) , -- G(1/x 2(L-~a) 

and write (4.60) and (4.61) in the form 

F(a) = A(xSa) X(xZa-~a) X(x2C-3Sa) R2(xZ~a) 1 (4.63) 
A(x2Z-sa) X(x~a) X(x3Sa) Rz(X2IL-~)a) p(xZ~a) 

(~) B(xS/a) y(x3s-2C/a) Y(xS~-2a/a)S2(1/a ) 1 (4.64) 
=. B(x3S_2L/a) Y(x~/a) Y(x-S/a) S2(x4s-2L/a) G(1/x2Sa) 

Solving now by direct recursion yields 

F(a) g(xZL- 3sa) 
X(xSa) 

~-I A(x(am+ x ) s a )  A(x(4m+ 1)s+2La) R2(x(4m+2)Sa) R2(Xams+2La) 
x m=oA(x~'~'T'd~(x~'~T'~2--~R~~R~u ) 1  1 (4m+3)s  (4m 1 ) s + 2 L  (4m+4)s  (4m 2 ) s + 2 L  

(4.65) 
and 

Y(x -'/a) 
~-r B(x(4m+ 1)'/a) B(x(4m+s)'-2L/a) S2(x4ms/a) S2(x(4m+6)s-2L/a) 

X roll= 0 B( x(4m + 3)Sl a) B( x(4m + 3 ) s  - 2L/a ) S2(x(4m + 2),/a ) S2(x(4m + 4 ) s  - -  2L/a ) 

Solving (4.62) recursively then gives the solutions 

(4.66) 

G(1/a) = ~I G(1/xz'(L-,)a) (4.68) 
n = 0  

F(a)= f i  F(x 2"(c S)a) (4.67) 
n = 0  
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Again, in the thermodynamic limit, we write the expression (2.43) for 
the eigenvalue V(z) in the form 

{V2( t)(z) for z >  1 
V2(z)= V(f)(z ) for z < l  (4.69) 

with, e.g., 

V2(')(z) = - ( - 1 ) ~  (A,, 2b2)(L--s)/L ( f ~ )  A(X2L-sz) B(1/x 2s) Sz) 

F(x2~z) G(1/x:~z) R2(xZLz) S2(1/x2Lz) X(x3~z) Y(1/x3~z) 
X 

F(x2Lz) G(1/x2Lz) R2(x 2~) $2( 1Ix 2s ) X(x 2L - "z) Y( 1Ix 2L - "z) 
(4.70) 

As in (4.30), we can establish that the contribution from the A and B 
functions yields the largest eigenvalue Vo(z ). Thus, we obtain the result 

Vo(Z) 
2b2)(L_s)/L {X~Z" ~ R2(X2Lz) S2(1/X2Lz) X(x3sz) Y(1/x3Sz) (A n - ~ )  R2(x2S ) $2 (l/x2s) X(x2 L_ sz ) y(l /x2 L sz ) 

X(x2,(L ~)+ 2L-sz) X(x2~(c ')+2L+,z) y(1/xZ,,(L-*I+ 2L-sz) 
X 

I t  X(x2~(c-.,)+3~.z) X(X2,,(L ,)+ar-3~z) y(1/X2,,(L-~)+3,Z) n~O 
y(1/x2n(L--s)+2L+Sz) R2(X(4m+4)s+2n(L-s)z) 
~ S ' - ~ - - - ~ s z )  f i  R2(X(4m+6)s+2n(L--s)z) 

m = O  

R2(x(4m+4)s + 2n(L s)+ 2LZ) Re(x(Zm 2)s+2n(L s)+4Lz) 
R2(x4ms + 2n(L - s)+ 2Lz) i 2 ( x 4 m s  + 2n(L s)+ 4Lz) 

S 2 ( x  (4rn 2)s- 2n(L-s)/z ) 
S2(X4m~--2"~--S)/z)  

S2(X(4m + 4)s - 2n(L -- s ) -  2L/z  ) S2(x(4m + 4)s - 2n(L - s) 4L/z ) 

X S2(X4ms_2n(L_s )_2L/z  ) S2(X(4m+6)s_2n(L_s  ) 4L/z ) (4.71) 

This expression can again be dramatically simplified, to yield the result 

r(2l)(z) (A n 262)(L s)/L(bZ_) E(a~ 1/z, x4S) E(an/Z,X 4s) 
Vo(z) E(x2~'z/an 1, x 4") E(x2Sz/a,,, x 4s) (4.72) 

In particular, we note the direct similarity with (4.33), the corresponding 
result for the 1-string excitations. The general result, 

V2(w) w E(xSa,,_ 1/W, X 4s) E(xSan/w, X 4s) 
Vo(W) - 4- (an tan) 1/2 E(xSw/an 1, x4") E(x'w/a~, x 4s) 

(4.73) 
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follows from (4.72), consideration of the expression for v(r)tz~ and the 2 ~ l~ 
result 

b 2 
(A,, _ 2b2) 2(L s)/r (4.74) 

an 1 an 

which follows from (4.58) and (4.59) with a =  0. 
Returning to (4.48), we find that the equation determining the location 

of the excitations is 

E(x'a,,_l/b, x 2(L-')) E(xSan/b, x 2(L "~) (4.75) 
(An 2b2) 2(2s L)/L _ _  E(x'b/an 1, x2(L ")) E(xSb/a,~, x2(L-s)) 

This equation, corresponding to (4.37) in the 1-string case, is again 
explicitly dependent on the location of the two holes. Similarly, we find 
that the equation for the a's is 

a" V E(x'/a' x4S) ] N )n x2L  - 2s) 
[ _ ~  ~T~ j + (-- 1 b(An_2b2) (zs-c)/L E(xLa/b,E(xCb/a' x2C_Zs ) 

x E(x2SaHa, x2L_2s) Y , X 2 , S x 2 L  2s =0 (4.76) 
j = n - - I  

with the holes an 1 and an, further satisfying 

[ 1 E(x'an_ 1, x4") E(x~an,- x4~) 7 N 
(a,,_,an) 1/2 ~ ~ , x  as) E(x'/a,,  x4S)J = 1 (4.77) 

So that at w = 1 the 2-string eigenvalues (4.73) are explicitly seen to be Nth  
roots of unity, as they must. 

5. L E A D I N G  E X C I T A T I O N S  ( 2 s > L )  

We have seen in the preceding section that the first band of excitations 
is composed of 1-string and 2-string excitations for 2s < L. When 2s > L the 
situation becomes more complicated, however, and longer strings occur. 
The classification of these excitations is analogous to that of the 
eight-vertex model excitations in the corresponding region. (15"16) The excita- 
tions are classified into two types, according to the values of L and s. 
Specifically, for r excitations off the unit circle, an r-string is classified as 

Type I: 1 ~< r ~< [LL~_s ] -  1 

[ 1 r =  L TypeII :  r=- ~ or ~ +1  
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x 2 L - 2 s  X L X 2s X 2 L  

Fig. 6. 

6 6 
0 0 Type I 

6 e 

I 

I~ I1~ I1~ Type II I I J 

i i I 

Pictorial representation of string excitations off the unit circle for the case 2s > L 
showing excitations of types I and II. 

where again [ . . . ]  denotes the integer part. A schematic picture of these 
r-string excitations is shown within the period annulus in Fig. 6. The key 
circles in the complex z plane are indicated by the heavy vertical lines with 
the unit circle labeled by 1. Each of the vertical lines represents a possible 
circle of specified radius for the excitations. We see that the l-string excita- 
tion is of type I with one zero on the circle lzl = x L. The dashed lines on 
either side of x L are incremented in units of L -  s. In this way the 2-string 
excitations appear  on the circles [zl = x '  and I z l  = x RE " = - x  - s .  In general 
a type I excitation must satisfy L + (r - 1 ) ( L  - s)  <~ 2s,  i.e., 

r(I~-s)<<.s (5.1) 

while for each type II  excitation we have 

r ( L  - s )  > s (5.2) 

In the rest of this section we use the Wiener -Hopf  perturbation 
method to calculate the eigenvalues corresponding to type I and type II 
r-string excitations. 

5.1. T y p e  I S t r ings ,  r (L-s)<s 

Consider a general r-string of type I with r satisfying (5.1) with strict 
inequality. The n zeros are denoted by 

Z/=  a/, j =  1,..., n - r (5.3) 
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with the other zeros of the form 

Zn r+=buxL+(r+l  2u)(L-s), # = l , . . . , r  (5.4) 

with lai] ~ I b ~ l -  1. With these substitutions the Bethe ansatz equations 
(2.44) are 

an-r FE(xS/a)] N + ( - 1 ) ~  " (A~ "~= i E(x2Sa/a) 
[ E(x'a) J rBr)2('-c)/L An-rj= E(x2Sa/aj) 

f i  E(x(r+3-2/~)s-(r+2-2u)Lbr+l-Y a) 
x E(x(r+3 2~)s (r+2 2~)La/b~ ) = 0  (5.5) 

/~=1 

with a = ak, k = 1,..., n - r, and 

q_ (__ l )n  (A n rBr)(2s L)/L xr(2s L) ~== 1 E( x2(v-~)(c-~)+ 2sb~/b~)/h " 

x ~ i f E ( x ( r + 3  2~)s (~+2 2,,)La/b~,) 
2~)~ (-;--i 2~)Sb./aj~) - 0  (5.6) E(x (r + 2 

j = l  

for # = 1 ..... r. Here we have defined 

Bm= f i  bj (5.7) 
j=l 

In order to discuss the r equations in (5.6), let us recall the corre- 
sponding treatment of the 2-strings in Section4.2. In that case each of 
Eqs. (4.43) and (4.44) led to the result b~ ~b2~b in the low-temperature 
limit or in the thermodynamic limit. We then eliminated a common factor 
from both the equations, resulting in (4.48), giving information on the 
values of b. For  the r-string equations, we proceed in a similar manner, 
eliminating a common factor between consecutive pairs of equations. The 
net result of this process is the single equation 

r Fb E(x(r+2 2,u)(L s)/br+l_,u).~N 
(& rBr)2r(L-s)/L=r [_ " E(X(r+2 2u)(L-s)b~ ) J 

(I e(x,r+  (r+' ""'%/b.) (5.8) 
X E(x(r+3 2/l)s (r+2 2u)Lbr+l_ja] ) 

j=  ~u=l 

In the limit x--* 0, (5.5) reduces to 

a n ~-1-(--1) n r(A n ~B~) a(S c)/LA,, r = 0  (5.9) 
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and so, setting 

1l r 

I ]  ( a - a j ) = l . h . s .  of (5.9) (5.10) 
j - -1  

yields 

(An rBr) 2(L-s) /L= 1 (5.11) 

On the other hand, from the equations for the b~, (5.6), we argue that in 
this limit 

b~=b, / l = l  ..... r (5.12) 

where, from (5.8) and (5.11), b satisfies 

b N = l  (5.13) 

From (5.11), we also have 

irckL 
An_ ~b r = exp \ L -  s /  for k = 0 ,  1 , . . . , 2 ( L - s ) - I  (5.14) 

Hence, given b from (5.13), this gives A . . . .  with the n -  r roots a given by 
the solutions of (5.9). In this way we see, for example, that there are 
2 N ( L - s )  1-string solutions as suggested by Fig. 3. In this limit we find 
that the eigenvalue expression (2.43) reduces to 

I V , ( w ) l  = w (5.15) 

All of the type I eigenvalues are thus seen to be in the first band of excita- 
tions. As a specific example, let us again consider the case L = 3, s = 2 with 
N =  6. For 1-string solutions, the requirement (5.1) is simply 2s > L. The 
relevant equations are 

a 2 + A 2 = 0  (5.16) 

with 

A2b = +_1, b = +_1, e +-~i/3, e +-2~i/3 (5.17) 

These equations give rise to the 12 solutions depicted in Fig. 7. However, 
from Table I we see there are in fact 24 eigenvalues in the w band. For  this 
example 2L = 3s and the remaining 12 eigenvalues turn out to be 2-strings, 
as discussed further in the next section. 
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(a) (b) (e) (d) 

Fig. 7. Schematic representation of the type I 1-string Bethe ansatz zeros in the 
low-temperature limit for N=6, L=3, and s=2, with (a) b = l ,  (b) b=exp(~i/3), (c) 
b = exp(2~i/3), (d) b = -1. The inner and outer circles are of radii ]zl = x L and tz[ = 1, respec- 
tively. The distribution of zeros for the remaining cases, b = exp(-27ri/3) and b = exp(-~i/3), 
are conjugate to (c) and (b), respectively. 

To proceed  with the pe r t u rba t i on  a rgument ,  we define the funct ions 
A(z) and  B(1/z) as in (3.8). However ,  because  there are  n -  r zeros in (5.5), 

the funct ions F(z) and G(1/z) are modif ied  to 

n r n r 

g , ( z ) =  I~  f i  (1--x2Lkz/z,) ,  G,(1/z)= [I ~ (1--xZCXzJ/z) 
j = l  k = O  j = l  k = l  

(5.18) 

As for the 2-str ings in Sect ion 4.2, it suffices in the t h e r m o d y n a m i c  l imit  to 
impose  (5.12) and  thus to use the previous  defini t ions (4.15) for the func- 
t ions X(z) and Y(1/z). This s impli f icat ion leads to cancel la t ion  of a number  

of terms in (5.5), which we write in the form 

a n r B(I/x2c "a)Gr(1/x2~a) Y(1/x ('+ 1)s rra) y(1/X(~-l ls-(r  2)La) 
B(1/x'a) Gr(1/x2(L-')a) Y(1/X(r + 2)L-(r + l)'a) Y(1/xrL-(r-1)'a) 

+ ( _  1)n r (An rbr) 2(s L)/L An ~ A(xSa) F'(x2(L ")a) 
A(x 2L- Sa) F~(x2"a) 

X(x(r+2)L (r+l)sa)X(xrL (r l~,a) 
= 0  X(X(r+l)s-rLa) X(x(r-1) s (r--a)La) x (5.19) 
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In a similar manner, we write (5.8) as 

( An - rbr )  2~(L- s)/L = b N A(x2L r(L ")b ) B(1 /x  2c- r(L ")b ) 
A ( x  r(L ")b ) B(1 /x  r(L - S)b ) 

F~(x s + r(L -Slb) Fr(.)c2L s + r(L s~ b) 

X Fr(xS_~(L_s)b) Fr(X2L s-r(L S)b) 

Gr (1Ix s + r(L S)b ) Gr (1/x2~ - s + ) 

Gr( 1/x s -  r(t - S)b ) G~( 1/x 2L - ~ r(L - ")b ) 

To treat the first equation, we write 

n - - r  

[ I  ( a - a j ) = l . h . s .  of (5.19) 
j = l  

Again equating dominant terms for ]al < 1 and lar > 1 yields 

A(x~.a) Fr(x2(L-S)a) X(x(,. + 2)L- (~ + 1)Sa) X(x~L-( ,--  l)Sa) 

and 

A(x2L-.~a) F~(x~.a) X(x{r + 1),-tEa) X(x(~-  1Is-(~-2)La) 

n l  1 -- a Fr(a) 
~ -  J = - -  fr(x2La) 

B(1/x2L-+-a) Gr(1/x2~a) y(1/x(,.+l)~ ~La) y (1 / x ( r - I ) ,  (,--2)Ca) 

(5.20) 

(5.21) 

(5.22) 

B(1/xSa) Gr(1/xZ(L-S)a) y ( 1 / x ( r + ~ L - (  ~+ l~Sa) y (1 / x  rL (r-l)Sa) 

= 1 - (5.23) 
j = l Gr(1/a) 

Proceeding as before, we solve these equations by recursion, with the result 

Fr(a )=  f i  P~(x 2n~L S)a) (5.24) 
n = 0  

G r ( l / a ) =  H Gr(1/X2nIL ~)a) (5.25) 
n = 0  
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where 

• 

Pearce and Batchelor 

~'r(a) = I-I A(x(4m+ 1)~a) A(x~4"+ *}*+2La) X(x(4"+ l > + ~ c - ' ) a )  
~=0 A(x(4m+3)sa) A( x(4m- 1)" + 2La) X( x(4m+ l>-r(C-')a)  

X(X(4m + 3)s-r( L S)a) X (x  (4m- 1)s + ~(r- ,) + 2Ca) X (x  (4m + 1)s--r(L-- s)+ 2La) 

X ( X ( 4 m  + 3)s + r(L - S)a) X(x(4m - 1)s - r(L -*)+ 2La) X(x(4m +,), + <(L - , )+ 2La) 

(5.26) 

and 

( ! )  = H ~ B(x(4m+ l)S/a) B(x(4m+ s)s- 2L/a) Y(X(4m+ l)s r(L--S)/a) 

m= 0  B ( ~ ~  B(x (4m+ 3 ) s - 2 L / a  ) g(x(4m+l)s+r(L-S)/a ) 

• 
y(x(4m + 3)s + r(L S)/a ) }Z(x(4m + 3)s r(L-- s)-- 2L/a ) y(x(4m + 5)s + r(L -- s) 2C/a ) 
y(x(4m + 3)s - r(L - ~ ) / a )  ] Z ( x ( 4 m  + 3 ) s  + r(L s ) -  2Z/a ) y(x(4m + 5)s ~(~-,)- 2L/a ) 

(5.27) 

In the thermodynamic limit, we can again write the eigenvalue expres- 
sion (2.43) for V(z) in the form 

~V(/r)(Z) for z >  1 (5.28) 
V , ( z ) =  ~ VJ )(z) for z <  I 

with 

A" x 2L -s  " B( 1Ix 2c - sz) 
V~l)(z)= __(__I)n(A,,_,br)(L-,)/Lxr(L s) t Z) 

A (x2*z) B(1/x2"z) 

X(XIr+')s-rLz)  y ( x  rL (~+ t>/z ) Fr(x2~z) G~(1/x2"z) 
• (5.29) X(xrL - (r l)Sz) y(x(r 1)s--rL/z ) F~(xZLz) Gr(1/x2Cz) 

and 

V~r)(z) = - ( -  1) n (A,, <b~) c~ L)/L xr(C-,) A(xsz)  B(1/x 'z )  
A(x2"z) B(1/x2Sz) 

X ( x ( r  + 2 ) L - ( r  + 1)sz) r(x(r  + 1)s (r + 2)L/z) Fr(X2(L-s)z) Gr(1/x2(L-S)z) 

x X(x (r_ l ) s_(r_2)rz )  y (x ( r_2)L_(r_ l )S / z )Fr(z )Gr(1 / z )  

(5.30) 



CSOS Models 111 

Let us consider the expression (5.29) for V}~(z). On substitution of the 
solutions (5.24) and (5.25), we again find that the contribution from the A 
and B functions gives the largest eigenvalue Vo(z). Thus we obtain 

v~l)(z)  -- (A  . . . .  br)(L s)/L xr (L-s )  X (  x(r+ 1)s rLz) y (xrL  - (~+ 1)s/z ) 
Vo(z ) X(x  ~c (~-l),z) y(x  (~-l)s-rL/Z) 

~ X(x(4m+3)s '+(2n+r)(L-s)Z)X(x(4m+5,s+(2n-r)(L S)z) 

X X ( x ( 4 m  + 3)s  + (2n -- r)(L s ) z  ) X(x(4m + 5)s + (2n + r)(L --S)z) 
m = 0  n = 0  

X (  x(4~ - ~ + (2 . -  r~(L s~ + 4%) X(  x(4m + ~ ~s + ~2~ + ~( L -  s~ + 4~Z ) 
X X(x(4m - -  1 ) s  4- (2n + r)(L - -  S )  + 4L Z) X(X(4m + 1 )s + (2n -- r)(L -- s) + 4L Z) 

y(x(4m-1)s (2,, + r)(L- s)/Z ) y(x(4m+l)s- (2n + r)(L s)/Z ) 

y (x (4m-1)s  (2 . . . .  )(L s)/z ) y(x(4m+ 1)s--{2n+r)(L-S)/z ) 

r (x(4m + 3  )s - (2n r)(L -- s ) -  4L/z) y(x(4m + s  )s - (2n + r)(L -- s) -- 4L/z ) 

y(x(4m+ 3)s-(2n+r)(L s ) -4L/z  ) y(x(4m+ 5)s (2n-O(L s)-4C/z ) 

(5.31) 
However, after simplification, this expression is in turn equivalent to 

V ~ ( z ) -  ( A n _ r b ' )  ~L sl/~ x ~  sl 
Vo(z)  

E(X(r + 1)s--rLz/b, x 4 S )  E(x~ + l)~-~Cb/z, x4~) 
• E (SL  (r- 1)~z/b, xgs) E(x~L (r-l~b/z, x4~)  (5.32) 

the same result, with, A similar treatment of (5.30) for V)r~(z) gives 
however, the equivalent prefactor (An rb') (~ L)/L. Using 

(An rbr)2(L-s)/c= 1 (5.33) 

which follows from (5.19) and (5.21) with a = 0 ,  we then have the general 
result 

V,(w)/Vo(w) = ++_~r(b/w) (5.34) 

where we have defined the function 

~r(W ) = 1 E ( x  r(L- S)w, x 4s) E(N r(L s)+ 2s/w ' x4S) 

w E(x r(c ")/w, x 4s) E(x r(c- ") + 2Sw, x 4~) (5.35) 

Returning to (5.20), we obtain an equation for b by using (5.24)- 
(5.27). After proving an identity and using (5.33), it can be written as 

~ y ( b ) =  1 (5.36) 
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Equation (5.36) is a higher-level Bethe ansatz equation, of the same form 
as those found in the hard-hexagon and hard-square models. ('8"19) 

5.2. T y p e  I S t r i n g s ,  r (L -s )=s  

In this section we consider values of r, L, and s satisfying the equality 

rL = (r + 1)s (5.37) 

For this case, the type I Bethe ansatz equations (5.5) can be written as 

an-r L E(x~a) j[E(x~/a)~ N ) . . . .  L)/c n~= I E(x2Saj/a )E(x2Sa/a;) + ( - - I  (A n rBr) 2(s An_rj = 

E(br/a) ~ E(x 2(~- ')(L- ~lbr + l_ Ja)  
XE(a/bl ~ [I2 ~ _ ~ 5 - a - / f f ~ ) ~ )  - 0  (5.38) 

that is, we simply pull out the ~ = 1 term in the last product of (5.5). Note 
that we have also used (5.37) to simplify the exponent of x. In a similar 
manner, the single equation corresponding to (5.8) is 

e(xS+2(l_u)(L S)/br+l_#)7 N 
(A,_~B~)Z'/L= 

x ~ r [ E ( a J b l ) ( I  E(x2(~-'l(LS'a~/b~') ] (5.39) 
i=1 [_E(br/aj) ~, = 2 E( x2(u- 1 ~(L - S)br  + ,  _ J a j ) J  

In the limit x--, 0, the Bethe ansatz equations (5.38) reduce to 

a n r - f - ( - - l ) n  r(An_~B~)2(" L)/LA~_~l--b~/a=o (5.40) 
1 a/b 1 

From the equations (5.6) for b~, we again have 

b~ = b, /~ = 1 ..... r (5.41) 

in this limit. Using this result, (5.39) reduces to 

( - 1 ) "  ~bn(A,, rbr)  (L 2s)/L= 1 (5.42) 

We can also rewrite (5.40) as 

an r + l + ( - 1 )  ~ - r + ' A  . . . .  b(An r b ~ )  2(s L)/L=o (5.43) 

SO that we have effectively increased the order of the equation by one [cf. 
Eq. (5.9)]. For brevity we will label the hole by '~1 =an ~+,. Setting 

n r + l  

1-[ (a-aj)=l .h.s .  of (5.43) (5.44) 
j=l  
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we find 

(A n rb,.)2(s_ L)/L =--al  (5 .45)  
b 

Insert ing this result in (5.42) yields 

An ~ + l = ( - l ) n - r b  . . . .  +~ (5.46) 

F r o m  (5.43) and (5.45) we also have 

A n _ , =  ( -  1) n r cT~ r (5.47) 

which, when subst i tuted into (5.46), yields 

(b/~ll) n-r+l  = 1 (5.48) 

As a specific example,  let us re turn to the case L = 3, s = 2 with N =  6 and 
consider the 2-string solutions. F r o m  (5.43), (5.45), and (5.48) the relevant  
equat ions  are 

a2 + alc71 = 0, b =  --+al (5.49) 

We first note that  (5.49) is consistent with a 1 = - a l ,  which is (5.47). We 
also need to use (5.45), which is a~gz~b = 1. These equat ions give rise to 12 
solutions, as depicted in Fig. 8. Along with the 12 type I 1-strings discussed 
in Section 5.1, we then have all of the 24 eigenvalues in the w band. 

(a) (b) 

Fig. 8. Schematic representation of the type I 2-string Bethe ansatz zeros in the 
tow-temperature limit for N = 6 ,  L =  3, and s = 2 ,  with (a) A2b= 1, (b) Azb=exp(27zi/3). 
The open circle indicates the position of the hole on the unit circle. The remaining circles 
are of radii I z l = x  ~ and Iz I = x  s. Another four sets of zeros are conjugate to (b) with 
A2b = e x p ( -  27~i/3). 

822/60/1-2-8 
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To carry out the perturbation argument, we need to introduce func- 
tions Fr l(z) and Gr_~(1/z) to deal with the hole al .  Here F,.(z) and 
Gr(1/z) are defined as in (5.18). We also define the functions 

j = l  k = 0  

S~ = 1 - x 2Lk (5.50) 
j = l  k = 0  

which are analogous to those defined in Sections 4.1 and 4.2. We again 
impose (5.41) and use the previous definitions (4.15) for the functions X(z) 
and Y(1/z). With these considerations, (5.38) and (5.39) can be written as 

a ~ ~+1 B(x" 2Z/a) y(X2('-L)/a) SI(x 2(" f)/a) Gr l(1/x2Sa) 

B(1/x*a) Y(1/x2Sa) &(1/xZsa) G~ ,(x2(a-L~/a) 

+ ( - 1)'--r+ 1 A._ rb(A. rbr) 2(s- L)/L 
A(x'a) X(x2"a) 

A ( x  2L Sa) X (x2 (L - s )a )  

Rl(X2"a) F~-l(x2(L "la) 0 (5.51) X 
R l (x2 (L-S )a )  f ,._ l(X2sa) 

and 

1 = (-1)n--r b~(An_ rb~)(c-2.)/c A( x2c "b) B(1/x 2L-,b) 
A(x'b) B(1/x*b) 

R,(x2(C- "lb ) Sl (1/x2(L- s)b ) Fr_ l(x2Sb ) Gr_ l(1/x2ab ) 
x Rl(x2Sb) Sl(1/x2"b) *rr" _ it ~i'~2(L S)b) Gr - l(1/x2( L S)b) 

(5.52) 

As before, we solve (5.51) for the functions F ,_ l (z )  and G r _ l ( 1 / z )  tO 
obtain 

Fr_l  (a) = 1~I F r -  l(x 2n(L-s)a) (5.53) 
n = 0  

Gr_l(1/a)= ~I G~ ~(1/x2ntL-')a) (5.54) 
n~O 

where 

o0 A(x(4m+ 1)s+2La) X(X(4m+ /g'r-l(a) = IJ= ~ ~ l)sa) .,4(x(4m + 2)Sa) 
3)Sa)A(x (4m 1)s+2La)X(x(4m+4)Sa) 

X(x 4m~ + 2Ca) R 1 ( X(4m + 2)s a) R 1 ( x4ms + 2La) 
• X(x~4m_z),+2La ) Rl(x(am+4)~a ) Rl(X(4,,,_2)s+2ra) (5.55) 
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and 

Gr 1 ( ! ) =  F[ B(x(4m+l)s /a)B(x(4m+5)s  2L/a) Y(x4ms/a) 
m = 0 B(x(4m + 3)s/a) B(  X(4m + 3 ) s -  2L/a ) y ( x ( 4 m  + 2)S/a ) 

g(x(4m + 6 ) s -  2L/a ) Sl(x4mS/a) Sl(X(4rn + 6 ) , -  2L/a ) 
x y(x<4,,,+41,_ZL/a) Sl(x(4m+2)S/a) Sl(x<4m+4)~_2L/a ) (5.56) 

In the thermodynamic limit, the eigenvalue expression (2.43) for V(z) is of 
the form 

~V}~l(z) for z >  1 (5.57) 
V,~(z) = [ V~2)(z ) for z < 1 

where 

<+> ~ 1) n A(x2L:'z) B(1/x 2c-sz) X(z) 
Vie (z) = ( -  (An_ rb") <t-'IlL x" A(x2,) B(1/x2,) X(x2~z ) 

Y(1/z) RI(X2LZ) SI(1/xZLz) F~_I(x2~z) G~ l(1/xZ'z) 
x y(1/x2~z) Rl(x2,z) SI(1/x2~z) F~ I(x2Lz) G~ I(1/x"Lz) (5.58) 

and 

V};)(z) = ( _  1)n (An_~b~)(~- L)/L x" A(x~z) B(1/x'z) X(xZCz) 
A(x ~) B(1/x 2') X(x2<~-'~z) 

Y(1/x2Lz) RI(z) SI(1/z) F~_ I(x2<L -~z)  G~_ I(x2<S- L~/z) • 
Y(x 2('- LI/Z) RI(x 2(L '~z) SI(x 2('- r)/z) F,._ l(z) G~: 1(l/z) 

(5.59) 

Substituting the solutions (5.53) and (5.54) into the expression (5.58) 
for (~ V+~ (z), we see that the contribution from the A and B functions is the 
same as that in Section 5.1, and so gives the largest eigenvalue Vo(z). Thus 
we arrive at the somewhat unwieldy intermediate result 

(t) V~ (z) 
Vo(z) 

X(z) r(1/z) 

X ( x ( 4 r n -  2)s + 2n(L = s)+ 4Lz) R1 (X (4m + 4)s + 2n(L --s)Z ) 
• 

X(x4ms + 2n(L s)+ 4Lz) R1 (x(4m + 6)s + 2n(L - S)z ) 

= (A n_,br) (L-')/L x s 
X(xZ~z) Y(1/x2"z) 

~ X(X<4"+4>s+2n<L-'~Z) X(X<4,.+4~s+2,,<L-.~+2LZ) 
• YI 11 J~f(x(4m + 6)s + 2n(L-- s)z ) X(X4ms + 2n(L-- s) + 2Lz ) 

m=O n~O 
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RI(X(4m +4)s + 2n(L- s) + 2Lz ) RI(X(4m--  2}s + 2n(L- s) + 4Lz ) 
• 

R~ (x 4~ + 2 . ( L  - ~1 + 2~  z )  R ~ ( x  ~m` + 2 . ( L  - ,~ + 4L z )  

y ( x  (4m 2)s-2n(L-S)/z  ) y(x(4m+4)s--2n(L--s)--2L/z ) 
• 

Y(x 4~" 2n(L- s)/z) r ( X  ""~-  :"(L s)-- 2L/z) 

y(x(4m + 4 ) s  - 2n(L - s) -  4L/z ) S 1  ( x ( 4 m  - 2 ) s -  2n(L - S)/z) 
• 

y(x(4m + 6 ) s  - 2n(L - s) -  4L/z ) Sl(x4ms - 2n(L - s)/z) 

Sl(X(4m + 4 ) s  - 2n(L -- s) -  2L/z ) Sl(X(nm + 4 ) s -  2n(L - s) -  4L/z ) 
• 

SI(X4ms--2n(L--s)--2L/z) Sl(X(4m+6) s 2n(L--s)--4L/z ) (5.60) 

After the application of a suitable identity, this expression dramatically 
simplifies to 

(t~ b r (L_s)/L(X~Z.~ E (b / z ,  x4S) E(~tl /z ,  x4~) Vie (Z) (A,_r ) (5.61) 
Vo(z) \ F 4 x ~ S z / b , ~ ; - ~ )  

A similar treatment of (5.59) for V)re~(Z) leads to the final result 

Vie(w) w E(x'b/w, x 4~) E(x'gq/w, x 4s) 
Vo(W--'-~ : -1- ( h a l )  1/2 E(xSw/b, x 4~) E(x'w/gq, x 4") (5.62) 

subject to (5.45), which also holds away from the low-temperature limit. 
Returning to (5.52), we find that it can be written as 

( A n _ r b r ) ( 2 s - L ) / L  = (__ 1)n r I X  E(xS/b'~ x__~s) l N  

E(x2S, x2L 2s) (b ,x2S,  x2L 2s) (5.63) 
x E(x2~b/al, x2 L 2s) y 

where the function Y(w, y, p) is defined in (3.24). On the other hand, the 
equation (5.51) for the a's is 

a" r+, ~E(xS/a,x4" lN~q )n r L~x--~')J + ( - - 1  +' (An_,br) 2(s-L)/L 

E ( x  2s, x 2L-  2s ) E ( x  2s, x 2L-  2s ) 
x An_rb E(x2,b/a, xZC- 2s) E(x2sgtl/a, x2L- 2s) 

x 3 -  ~, (5.64) 
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Using (5.45), the hole ~71 then satisfies 

g(xs/~ll, x4S)~ N )n--r 2s)/L 
~t 1 E(xS~tl,X4S) l + ( - - I  +I  (An_rbr)(L- 

• E(x2~b/al, x2L-2s) g , XZS, x2L 2, = 0 (5.65) 

Elimination of the common factor between this equation and (5.63) then 
yields 

I 1 E(xSb, x 4s) E(xYt  1 , x 4" ) 7 x 
(b?t-~) '/2 E(xS/b, x4S) ~ X-~iJ  = i (5.66) 

again ensuring that the eigenvalues (5.62) are Nth roots of unity at w--- 1. 

5.3. Type II Strings, r (L-s)>s 

The last case to be considered is that of type II strings with 

r(L - s) > s (5.67) 

We write the Bethe ansatz equation for a corresponding to (5.5) and (5.38) 
in the form 

a n r+2 ~E(xS/a)7 N 
L E(xsa) J + ( -  l)n ~ (A ,  rBr) (2s-L)/L b,b~ ~I" E(x2Sa/a) 

B,. j = 1 E(x2~a/aj) 

E(x  r(L-s) ~a/b~) ~_fl E(xS+(, 2,~(r ")bja)  
0 (S.68) • E(x~(L - ~1 ~b,/a) ,11=1 E( x~-'--s (7- 2~)(L ")a/b,~+ i - ,)  

The single equation corresponding to (5.8) and (5.39) is 

(A,  rB~) 2~(L-s~/L 

_ A]_~2 17r [ba E(x(r+2-2u)(L-s)/br+l-u)l~" 
(b lby-~t~=~ E(x(~+2 2p)(L ")b,) 

• E(xs+(r 2~'(L-s 'aj /br+l-#)] (5.69) 
j = l  LE~TUZ(r+l)S-/bozj/rl,u=l ~ I J- E ( x S + O  . 21~)(L-s)bl.t/(lj ) J 

In the limit x--* 0, these equations reduce to 

a ~ - , + z + ( _ l ) ~ - ~ b Z - ~ ( A  ~ ~br)( 2s c)/r= 0 

and 
(An rbr) 2r(L-s)/L = (A .. . .  br) 2 

(5.70) 

(5.71) 
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where we have again set b~ = b. In this case we see that there are effectively 
two holes. For  brevity we label them by 

?lm=an ,+m (5.72) 

with now m = 1 and 2. This time, setting 
n--r~ 2 

I - l  ( a -  aj) = 1.h.s. of (5.70) 
/=  1 

gives 

(5.73) 

These equations are again consistent, yielding eigenvalues satisfying 

I V . ( w ) l  = w (5.78) 

As an example, for the case L = 5, s = 3 with N = 10, we find there are 40 
type I 1-string excitations, 40 type II 2-strings, and 30 type II 3-strings, 
which exhausts all 110 eigenvalues in the w band. 

For  the perturbation argument, we work with the functions F, 2(z), 
G,_2(1/z), R~(z), and S2(1/z ) to deal with the two holes. The functions 
Fr(z), G,(1/z), Rm(z), and Sm(1/Z) are defined as in (5.18) and (5.50). We 
will again impose the relation b e = b and use the previous definitions (4.15) 
for the functions X(z) and Y(t/z). With these considerations, we rewrite 
(5.68) and (5.69) as 

a" "+ 2 B(1/x 2L- "a) Y(x r~z'- s~- 2L-- S/a ) y(xr(L s ) -  2L + s/a ) 

B(1/xSa) y(1/x,~L - s) ~a) Y( 1/x "~L- s) + "a) 

S2(1/x2(L-S)a) 25 Gr 2(1/x a) + ( _ l ) n _ , b  2 r(An_ rbr)(2s-  L)/L 
• S2(1/x2Sa) G,-_ 2(1/x2r ~)a--) 

A(xSa) X(X'~L-~)-Sa) X(x,~L-~+~a) 
X A(x2L_  sa) X ( x 2  L s - r (L -S )a )  X(x2L+~ teL-~)a) 

RR(x2Sa) Fr_ 2(Xe(L- s)a) 
X R2(X2(L_,)a)  F r _ 2(x2sa) ~ 0 (5.79) 

,4 hr)2(L s)/L b2 _ ,  , _ ,  - ~  (5.74) 
a l  a2 

Substituting this result in (5.71) yields 

2 A n _  r = ( a l a 2 )  - r  (5.75) 

However, from (5.70) we also have 

AZn_r = (~lt~2)n r (5.76) 

so that 
(81~2) n = 1 (5.77) 
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and 

(A n_rbr)2r(L s)/L 

A ( x  2L-r(L ")b) B(x  r(L-s) 2L/b) 
= (A, ,.br) 2 A(x,.(L_,)b) B(1/x~(L_,)b) 

R2(x2L . . . .  (L - s) b) R2(x2L +, -  ~(r ")b ) 

x R2(xr(C-~)-'b) R2(x r(L ~)+~b) 

S 2 ( x  ~(~ ~) - ~ + S/b) S 2 ( x  "(~ - ' )  ~-'/b) 
X S2(1/x~(L_,)_Sb) S2(I/xr(L_s)+,b) 

F~ 2(xr(L-s)-sb) Fr_2(xr(L-s)+sb) 
(~,.2L+s--r(L s)h] x r~_ 2(x 2L -s--r(L ")b) f r _  2t~ ~I 

Gr 2(1/x~(C-~)-Sb)G~ 2(1/x"tL-s)+~b) 
x 

G~ 2(x ~(L-~) 2c+S/b) G~ 2(x~(L-~)-zz- ' /b)  

From (5.79) we obtain 

A(x 'a)  X(x~(L-~)- 'a)  X ( x  ~(L - ' )+'a)  
A(x2L -Sa) X(x2L s-  r(L - S)a) X(X2L + ~,-r(L--S)a ) 

R2(x2Sa) F~_2(x2(C-')a) F~ 2(a) 
• 

R2(x2(L-')a) F~_2(x2"a)-  F~ 2(x2La) 

(5.80) 

(5.81) 

and 

B(1/x 2c "a) Y(x  r(L - ") - 2L "a) Y(x r(L- ~) - ac + "a) 

B(1Ix'a) Y( t / x  r(r ") - "a) Y( 1Ix r(c - ") + "a 

S2(1/x 2(L ~)a) Gr 2(1/x2~a) 
• 

$2(1/x2"a) Gr_ 2( 1/x2(L - ")a) 

Gr_ 2(1/xaCa) 

Gr_2(1/a) 
(5.82) 

for la[ < 1 and [a[ > 1, respectively. Solving these recursively yields the 
solutions 

Fr 2(a)= l~I L 2(x 2"~L -S)a) (5.83) 
n = 0 

G,.-2(1/a)= Fl Gr-2(t/X2'~(L-s)a) (5.84) 
n = 0  
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where 

X(xr(L s) So) ~[ A(x(4,,,+l)Xa) A(x(4m+ 1)s+2La) 
P~ 2(a) = X ( - ~ ~ a  ) 2=lo A(x(4m+ 31Sa) A(x(nm 1)s+2La) 

R2(x(4m + 2)Sa) R 2 ( x  4ms + 2La) 
X Rz(x(4m+4)Sa ) R2(X(4m_2)s+2La) (5.85) 

and 

Or -- ( ! )  y~sY(1/xr(L-s)T- 2~ -+s Sa)/--a) f i  B(x(4m+ 1'S/a) B(x(4m+ 5,, 2L/a ) 
2 - m=o B(x(4m+31s/a) B(x(am+3)s-2L/a) 

S2(xams/a) S2(x(4m + 6~,- 2L/a ) 
• S2(x(4m+2)S/a) S2(X(4m+4)s_2L/a ) (5.86) 

In the thermodynamic limit, the eigenvalue expression (2.43) for V(z) 
is again of the form 

Vn(z )=(V~(z )  for z > l  (5.87) V~7)(z) for z < 1 

only now 

and 

xSz 
V~)(z) = - ( - -  1) ~ (A, ~b') <L ,)/L_b_ 

A(X2L-.,.Z) B(1/X2L Sz) X(x2L +~--r(L S)z) 
A(x ~s) B(1/x ~s) X(xS+~(~-S~z) 

y(xr(L s)- 2L S/z ) 

x y(1/xr(L_s~+SZ) 

R2(x2Lz) S2(1/x2Lz) F,_ 2(x2Sz) Gr 2(1/x2Sz) 
X 

R~(xZ'z) S2(llx~Sz) F,_ 2(x~z) G r 2(1/X2Lz) (5.88) 

V~)(z) = - ( -  1)" (A._rb~) (s LI/L X~_~ b 
Z 

A(xSz) B(1/xSz) X(x  r~L s)-sz) 
x A(x 2~) B(1/x 2S) X(x 2L . . . . .  ~L-S)z) 

y(1/xr(L s)-Sz) 
• y(xr(L s)--2L+s/z ) 

R2(z) S2(1/z) Fr 2(x 2~L S~z) G~_2(1/x2~L-~Z) 
X R2(x2~L_S)Z) S2(1/xZ(L_~)Z) Fr-2(z) G~_2(1/z) (5.89) 
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Substituting the results (5.83) and (5.84) into the expression (5.88) for 
VU)(z H, ) ,wehave  

V~)(z)-  (A. rbr) (L-~}/L x~z 
Vo(Z) b 

X(x2L +s r(L S)z) y ( x r (L - s )  2L S/z ) R2(x2Lz)  S2(1/x2Lz)  
• 

X(x s+~(L ">z) Y(1/xr(L-s)+'/Z) R2(x2"z) S2(1/x2~z) 

X(x'+(2"+'>(~-S>z) X(x ~L s+(2~-~>(~-,)z) 

n=O 

y(  1ix s + (2n + r)(L -- S)z) y (  l /x4L --s + (2n - ~)(L S)z) 

Y ( 1 / x  2L +~+(2~-r)(c ~)z) Y(1/x2L-s+(2~+')(L-'IZ) 

• f i  R2(X(4m+4)s+2n(L s)z)R2(X(4m+4)s+2n( L s)+2Lz) 

m = 0  R2(X(4m+6)s+2n(L s)Z)R2(x4mS+2n(L s)+2Lz) 

R:(x(4 , , , -  2). + 2 , , ~ - . ) +  ~ z )  S~(x  ~ - 2)s-  2 .~  S)/z ) 
X R2(x4mS+2n(L_s)+4Cz) S2(X4m s 2n(L_s)/z) 

S2(X(4m+4)s 2n(L-s) 2L/z)S2(X(4m+4)s--2n(L s) 4L/z ) 
X S~(X4,.s_~.(~_~.2~/z) S~(x(4m+6~ , ;.r ) (5.90) 

This expression in turn simplifies to 

V(o  z 1 1  ( ) - -  - ( A .  b.](c s)/L xsz E(a l / z ,  x4s) E(a2/z ,  x4s) 
Vo(Z ) -- - r  ,' b E(x2Sz/Cll, x 4s) E(x2Sz/cl2, x 4s) 

(5.91) 

The general result 

VH(w) w E(xSa,/w, x% E(x'a2/w, x 4~) 
Vo(w) -+ (8182) 1 / ~  E(xSw/~tl, x 4~) E(xSw/~t2, x 4s) (5.92) 

follows from (5.91), the analogous result for V~r~)(Z), and the result (5.74), 
which again holds away from the low-temperature limit. 
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Returning to (5.80), we find that the equation determining the location 
of the excitations simplifies to 

(A n rb~')2r(L sl/L 

E(xr(L-s)-"gtl/b' x2(L-s)) E(xr(L-s) '?t2/b' x2(L ")) (5.93) 
= (A . . . .  b ')  2 E(X,.(L-,)  Sb/gt~ix2(L s)) E(x , (L ,) ,b/81 ' x2(L s)) 

Similarly, we find that the equation for the a's is 

~ e ( x ' / a ,  x4~)~ x a n r+2L  j 

E(xr(L -,'3 "a/b, x 2L- 2s) 
+ ( -  1) '~-r b2-r(A, ,  ,br) (z ' -c) /c  E(Xr(L s) "b/a, x :L 2,) 

x 1-[ E(x2 , ,x2C 2,) a ,X2 , , x2L_2s  = 0  (5.94) 
e(x2Sam/a, x J 

from which, proceeding as in Section 4, we find that the holes 8~ and 82 
satisfy 

I l E(xS~ll, x4S) E(xS~12, x4S) IN 
( gt~ ~2)'/2 E(x~/a , ,  x4S) E(xS/gl2, X4S) J = l (5.95) 

indicating that the type II eigenvalues (5.92) are Nth roots of unity at 
w = l .  

6. C O R R E L A T I O N  L E N G T H  

In the previous sections we have elucidated the structure of the row 
transfer matrix eigenvalue spectrum of the CSOS models. In general, for 
anisotropic interactions (ur or zva 1), the eigenvalues are complex. 
Specifically, we have found 2 ( L - s )  largest eigenvalues which are 
asymptotically degenerate in the thermodynamic limit. The eigenvalues 
corresponding to excitations from these ground states are classified into 
various bands of excitations. These bands contain a large number of eigen- 
values and become continuous as N ~  oo. The largest eigenvalues are 
separated from the other eigenvalues by a gap which persists in the ther- 
modynamic limit. The dominant band of excitations falls in the w band and 
corresponds to 1-strings. It is the existence of the gap that leads to a finite 
correlation length. At criticality, the eigenvalues collapse, the gap vanishes, 
and the correlation length diverges. In this section, we calculate the correla- 
tion length ~ by extracting the appropriate gap. This is most 
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straightforward in the case of isotropic interactions (u = 2/2, z = 1), since 
then the transfer matrix is real symmetric and the eigenvalues are real. In 
the anisotropic case, it is necessary to integrate ~14) over the dominant band 
of complex eigenvalues. The results obtained by the two methods must 
agree, since, by general arguments, (4) the horizontal and vertical pair 
correlation functions and correlation length depend only on the eigenvec- 
tots of the transfer matrix. But these eigenvectors do not depend on u and 
so the correlation length ~. is independent of the anisotropy. 

Let us consider correlations between two sites i and j in the same 
column on a lattice of N columns and M periodic rows. By translational 
invariance we can take both sites to be in column 1. Let q~i be a single-site 
operator associated with the site at column 1 in row i with elements 

N 

qo,(alb)=p(a~) 1~ c$(ak, bk) (6.1) 
k = l  

The function (p(al) specifies the type of correlation function; for example, 
to work with simple height correlations we would define this function by 
q~(a~) = 6(al, a) with a some fixed height. Let Vo be the largest eigenvalue 
of the transfer matrix V with corresponding eigenvector t0). The pair 
correlation function between two sites i a n d j  in column l and separated by 
l rows is then given by 

Tr tpiVl%V ~ -  r (6.2) 
(q)iq)J) = Tr V M 

In the limit N, M--+ o% we obtain 

p ' t w o )  
(6.3) 

where the sum is over all eigenvalues labeled by p with the corresponding 
eigenvectors denoted by IP). For the 2 ( L -  s) largest eigenvalues we have 
llp/Vo = __+1, whereas for the other eigenvalues ]Vp/VoJ < 1. Hence we find 

/v~V 
(~o /ps ) -  lira (~,~os) = ~ *  (01 ~, IP)(Pl ~os [0) ~oo) (6,4) 

i j ~ 7 ~  P 

where the starred sum excludes the 2 ( L - s )  largest eigenvalues. Clearly, in 
the case of real eigenvalues, the decay of correlation functions for large l is 
determined by 

- ~  l = l n  [VI/Vo] (6.5) 
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where V1 is the largest eigenvalue excluding the 2 ( L - s )  largest eigen- 
values. This result holds provided the matrix element <01 (Pi [1 ) does not 
vanish. The above arguments hold for the case of isotropic interactions 
(u = 2/2, z = 1) and real eigenvalues. In the case when the transfer matrix 
is not real symmetric, it is necessary to integrate over the dominant band 
of complex eigenvalues. 

6.1. Correlation Length: 2 s<L 

Let us first consider the values of L and s for which 2s < L. We dis- 
cussed the nature of the elementary excitations for this case in Section 4. 
Specifically, we found that the leading band of eigenvalues is composed of 
1-string and 2-string excitations. Our results for the corresponding eigen- 
values are (4.36) and (4.73). Let us consider the isotropic case, for which 
all the eigenvalues are real. By solving the Bethe ansatz equations numeri- 
cally and comparing the eigenvalues with the eigenspectrum obtained from 
direct numerical diagonalization of the transfer matrix, we find that for 
finite systems the leading excitation is a 1-string. In particular, the single 
excitation occurs at b = -1 ,  that is, the excitation is located exactly at 
zn = - x  L for finite systems. In the thermodynamic limit, the largest of the 
1-string eigenvalues has holes at an = - 1  and an +1-- - 1  and is given by 

rl xS[ E(-z,.u 4s) 12 
V0 z LE-~-~z~M')J 

~I[ (l"~-X4nsz)(l-~x4nSZ1)i] 2 =xS(z1/2-I-Z-1/2)2 (1 _4_ X(4 n 2)sZ)(l+X(4n 2)Sz_ 1 (6.6) 
n = l  

where, in the isotropic case, z = 1. The leading 2-string excitation appears 
lower down in the eigenvalue spectrum. It follows that the correlation 
length ~ is given by 

r l = - l n  [ E(-l, x4s)12; 

{ [ l+x4.s 
= - l n  4x s f l  1-]-x(4n--~2)sJ j (6.7) 

n = l  

The above two formulas are formally identical to the corresponding results 
for the eight-vertex model. (4) 

In the anisotropic case ( z r  1) it is necessary to integrate over the 
band of complex 1-string eigenvalues. In this case we obtain 
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( q ~ p j ) -  lim (rp,rpj) 
i - - j ~ c ~  

~ ]anl=l lan+ll=l a,~ a n +  1 

• p ( a . ,  + 1) E(xSw/a., 
(6.8) 

where a,, and a~+~ are the locations of the two holes and the matrix 
elements have been absorbed into the continuous density p(a,, ,  a,, +~) of the 
eigenvalues. In the limit l--* oo this integral can be evaluated by steepest 
descents. Deforming the contours through the saddle points 

an = an+ 1 = - w / x  ~ (6.9) 

gives the same formula for the correlation length ~ obtained above. 
To calculate the correlation length exponent, we need to revert to the 

original parametrization of Section 2. This yields the result 

1 = - 2  in  04(0 ,  pC/2s) 
04(n/2, pL/Zs) (6.10) 

where the theta function 04(u, p )  is defined in (2.7). Near criticality we then 
have 

r  -c/2s as p--*0 + (6.11) 

Hence the correlation exponent is 

L 
v=  2s (6.12) 

6.2. Correlat ion Length: 2 s > L  

In previous sections we have seen that, for 2s > L, the excitation pic- 
ture is more complicated, with the appearance of longer strings. The type 1 
r-strings calculated in Section 5.1 are given by (5.32) with r ( L - s ) <  s. The 
leading eigenvalue in each band of type I r-strings again occurs at b = -1  
and is given by 

Vz r(L s) E ( - - x "  r(L-S)Z, X 4'') E ( - - x  s -  r(c ")z-1,  x4s) 
- - = x  (6.13) V o E ( - -X '+r (L = ' )Z ,  X 4s) E ( - - x S + ' ( c - ' ) z  1, x4S) 
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where z = 1 in the isotropic case. Since the largest eigenvalue occurs for 
r = 1 in the isotropic case, this result yields the correlation length 

{ F ~ [ 1 = - I n  x (L s) ~-~Z-x4--Z '  
L ( -  , ) J ]  

= - 2  In 04(~/2 - ~L/4s, pL/2,) 
04(~L/4s, pL/Zs) (6.14) 

which gives 

1 
~ 8sin[Tr(L_s)/2s]P -L/z" as p ~ 0  + (6.15) 

Hence we again find 

L 
v = - -  (6.16) 

2s 

Again the correlation length ~ can be obtained by integrating over the 
complex band of type I 1-strings. In this case we obtain the result 

l - -  j ~ coo 

~ - -  db Fw E(xL Sb/w, x4S) E(xL +Sw/b, .x4s)ll 
1 ~bl=l__.ffp(b)[_gE~Z_s~,~)E(xL+Sb/w, x4S) j (6.17) 2~i 

The saddle point now occurs at 

W 
b - (6.18) X s 

so again the method of steepest descents gives the same formula for the 
correlation length ~ as given above. 

7. C O N C L U S I O N  

In this paper  we have calculated the free energy and the largest bands 
of eigenvalues of the row transfer matrix for the cyclic solid-on-solid 
models with L heights and crossing parameter  2 = 7rs/L. The Wiener -Hopf  
perturbation methods applied can be straightforwardly extended to obtain 
bands of eigenvalues further down in the spectrum. We have found two dif- 
ferent classifications of the string excitations applying to the cases 2s < L 
and 2s>L. These agree with the classification of excitations for the 
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eight-vertex model proposed by Klfimper and Zittartz. (15'j6~ From the 
dominant band of excitations we have obtained formulas for the correla- 
tion length. The associated critical exponent is 

v= L/2s (7.1) 

in agreement with the scaling relations. This is the central result of this 
paper. In particular, for the three-coloring problem, (5) we notice that the 
correlation length ~ is given by (6.14) with L =  3 and s = 2, so that in this 
case v = 3/4. 

There is further work to be done. It remains to obtain interfacial ten- 
sions by calculating the asymptotic degeneracy of the largest eigenvalues. It 
would also be of interest to solve the inversion identity (2.33) directly by 
the methods of this paper. In the thermodynamic limit this equation sim- 
plifies considerably, since the second term on the right side is exponentially 
small in the strip - 2 / 2  < u <  2/2. It therefore follows that, in the ther- 
modynamic limit, all eigenvalues must satisfy the functional relation or 
inversion relation 

V(u)  V(u + ,~) = (~(,~ - u) 0(;~ + u) (7.2) 

in this strip. Following Kltimper and Zittartz, let us define excitation 
functions l(u) by 

V(u)  
/ (u)= lim (7.3) 

N~ ~ Vo(U) 

Then the excitation functions satisfy the functional relation 

l(u) l(u + 2) = 1 (7.4) 

or, in terms of z, 

l(z) l(x2Sz)= 1 (7.5) 

Finally, it is indeed verified directly that all of the expressions obtained for 
the various bands of eigenvalues in this paper satisfy this functional 
relation. 

A P P E N D I X  A. I N V E R S I O N  I D E N T I T Y  D E R I V A T I O N  

In this Appendix we derive (26) the inversion identity (2.33). 
In writing down the vertex weights (2.1)-(2.4), we have suppressed an 

explicit dependence on gauge factors, (2) which in any case cancel out of the 
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transfer matrix for periodic boundary conditions. However, in deriving the 
inversion identity, it is convenient to make a specific choice of gauge. In 
particular, we make a choice that destroys the diagonal reflection sym- 
metry in the weights fia, as given in (2.2), which is now replaced by 

a a - l )  01(u) O4(w~_l) 
W = (A.1) 

a + 1 a 01(2) 04(wa) 

W(  a a + l ) =  01(u) O4(wa+l) (1.2) 
a -  1 a 01(2) 04(Wa) 

The remaining weights are unchanged. 
The elements of the commuting family of transfer matrices V(u) are 

gauge invariant and given in terms of the face weights by 

__~W J ai+1 V(ll)a a, =j = a1 aJ+l u (A.3) 

We define a matrix R by 

R b .rg=W gb u W g u + 2  (A.4) 

In the symmetric gauge the usual local inversion relation takes the form 

~ R ( ~  c) 01(2-u)Ot(2+u)6(b,d) (A.5) 
g c o g -  01(2) 2 

where 6(b, d) is a Kronecker delta function. With periodic boundary condi- 
tions it follows that 

[V(u) V(u+2)]a,,=Tr I~ R (A.6) 
j=l \aj aj+l/ 

where the product is an ordered product of matrices and N must be even. 
The various types of R matrices are given explicitly as follows: 

Diagonal (2 x 2 matrices) 

a) 
/ 01(2 +.) ) 

04(Wa) I . . . .  ~1(~--~--- 0 
--04(Wa_l)~O4(wa__u)O4(Wa.~_l,l ) Ol(bl)204(WaZ1)O4(Wa+l). (1.7) 

\ ~ 01(2) 2 04(Wa) 2 / 
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O~(w.) 
04(w.+,) ( 0k(U) 2 (~4(Wa- 1) 04(W~t + 1) 

Mixed (2 x I and 1 x 2 vectors) 

R(a a+ a a-- 

R a - -  
a +  l 

1 

R['a+l 
\a-1  

0j  w. _2 "2 0~ (~___~. _+ .) \ 
04(Wa)2 

o~(,~- ,)  o~(,~ + u)]  

01(2- u) 04(wa_ 1 - u)\  

a +  o4(wo) _ 0,(;~+ u) O4{wo+1 v~) ]  
01(,~ ) 04(Wa+l) / 

ol(x+~)o4{wo_~+ut\ 

o~(;~) O~(w~+ ~) / 

; )=  ~176 (1 ~) 
01(~) 04(Wa) 

; )=  O~{u)G(w~ (1 ~) 
o1{;~) O4(w.) 

(A.81 

(A.9) 

(A.~0) 

(A.I~} 

(a.12) 

Nondiagonal (1 x 1 scalars) 

a + l  a + 2  - 1  a - 2  

( a a - i )  01(u) Ol(2+u)O4(w~_~) 
R a + 2  a +  = 01(2) 2 04(w.~_~) 

R a - - 2  a -  = 01(2) 2 ~ i i  

G(u} 0l{2-u) 
01{;~) 2 (A.13) 

(A.14) 

(A.~5) 

The eigenvalues of the 2 x 2 matrices are determined by some simple 
left and right eigenvectors according to the equations 

1 = 0~(2)204(w~) (1 1) (A.16) 

(, 1) 
+ l  = 0~(t) 204(wa) (1 1) (A.17) 

B22/6oi~-2-9 
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1 

(A.19) 

which follow readily from the elliptic function identity 

04(W a ~- U) 04(W a -- U) 

~-Ol(bl)204(Wa 1)04(Wa+l)-~-Ol(.~--l.t)Ol(~-~-IA)O4(wa) 2 (A.20) 

Other properties of the R matrices needed are the inner products 

(a a l) (1 1) a +  

Oxt +,104(w + 
-- 04(Wa) L O,('~)04(Wa i )  Ol(~)04(Wa+~ 

Oz(u) 01(22) 0 4 ( w a -  u) 
= 01()~) 2 04(wa+ 1) (A.21) 

and 

__ 04(Wa+l)FOl()~-lt)O4(Wa-l ~-LI) Ol(~--u) O4(Wa+l-~-bl!l 
O4(w.) L o~(r -oT(~O4(w.+~) 

01(U ) 01(2,~ ) 04(W a -~ bl) 
~- Ol(~)2 04(Wa_ l ) (A.22) 

The elements of the matrix V(u)V(u + 2) fall into three categories. 
They are completely diagonal, completely nondiagonal, or mixed. In all 
cases we find that the matrix elements satisfy the inversion identity 

where I is the identity matrix and P(u) is an auxiliary matrix that com- 
mutes with u and whose elements are entire functions of u. More specifi- 
cally, if an element of V(u) V(u + 2) is completely nondiagonal, then each 
R matrix is a scalar and each contributes a factor OI(U)/OI(/,), SO the 
element is of the form of the second term in the inversion identity. If an 
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element falls in the mixed category, then it breaks up into a number of 
scalar segments, starting and ending at nondiagonal points. But the 1 x 2 
mixed R matrices are left eigenvectors of the 2 x 2 diagonal R matrices. 
Hence they can be propagated to the right. Each diagonal 2 x 2 R matrix 
thus contributes a factor 01(u)/0~(2), which comes from the eigenvalue of 
its left eigenvector. The remaining inner product of R matrices contributes 
two factors of 01(u)/0~(2), one from the 1 x 2 mixed R matrix itself and the 
other from the inner product as discussed above. So again such elements 
must be of the form of the second term in the inversion identity. Finally, 
if an element is completely diagonal, then the prefactors of the 2 x 2 
diagonal R matrices, which are just gauge factors, cancel out and the trace 
is given by the sum of the Nth powers of the common eigenvalues. Clearly 
this is of the required form, where now both terms on the right-side of the 
inversion identity are needed. 

The inversion identity is in fact just the first functional equation in a 
fusion hierarchy (28'29) relating solvable models constructed by fusing 
together(30 34) p x  q blocks of elementary faces. This construction gives 
rise (29) to commuting transfer matrices vPq(u) satisfying 

vp~(u) v ' r ( v ) =  Vpr(v) vp~(u) (A.24) 

In this way the auxiliary matrix P(u) in the CSOS inversion identity is 
identified as the row transfer matrix of the solvable model resulting from 
1 x 2 fusion. 

A P P E N D I X  B. R E S H E T I K H I N ' S A N A L Y T I C A N S A T Z  

In this Appendix we derive the Bethe ansatz equations from the inver- 
sion identity (2.33) and the properties (2.36)-(2.38), again with N = 0  
(mod L). 

Operating with either side of the inversion identity on a fixed common 
eigenvector of V(u) and P(u) gives a set of functional equations for the 
eigenvalues of the transfer matrix of the same form, namely 

v(u) V(u + ,~) = +(;~ - u) +(;~ + , )  + r p(~) (B.1) 

V*(u)  = v() .  - u) ( 8 . 2 )  

v ( u + ~ ) = ( - ~ )  N Z(u) 

V(Ll q- TCT) ~-- ( - -p  - l e  --2iu)N e2ni).V(ld) 

(B.3) 

(B.4) 
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We begin in the n = 0 sector, where all the arrows are up and V(u) is the 
simple cyclic L x L matrix 

v(~)  = 

o o...ob\ 
b O a  . . .  O 0  

O b O . . .  O 0  

0 0 0  . . .  O a  

a O 0  . . .  b O 

(B.S) 

in which a = ~b(2- u) and b = ~b(u). The eigenvalues are given by 

V ( u )  = ~4~(,~ - u) + ~o-l(~(u) (B.6) 

where coL= 1. This V(u) is seen to satisfy (B.1)-(B.4). 
Now, following Reshetikhin, (27) we use the ansatz 

V(u) = ~(,~ - u) A(u) + (J(u) B(u) (B.7) 

for the n ~> 1 cases. The functions A(u)  and B(u) are to be quasiperiodic, 
meromorphic, and each have the same number of zeros and poles. Since 
V(u) has no poles, the poles of A(u)  must be the same as the poles of B(u) 
and their residues must cancel, that is, 

A ( u )  = c (] 01(U a j )  

j =  ~ O ~ ( u -  s j ) '  

with 

n 0 1 ( b  / __ bj) 
B(u) D I:jV101(u - sj) (B.8) 

C(J(2 - sk) [ 1 0 1 ( s k  - aj) + D(~(sk) 11 Ol(Sk -- bj) = 0 (B.9) 
j = l  j = l  

In order to satisfy the inversion identity, we see that substitution of the 
ansatz (B.7) into (B.1) requires that 

A ( u ) A * ( - u ) = l  (B.10) 

B(u) = A*(2  - u) (B.11) 

Now these last two equations are to be solved for a;, b j, C and D in terms 
of s/. The result (B.9) then becomes the Bethe ansatz equation determining 
s~. Equating zeros and poles in (B.11) yields 

b+= Z -  a?, s /=  2 - V (B.12) 
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Similarly, from (B.IO) we have 

~j = -a;*, aj = -~*  (B.13) 

Substitution of these results into (B.9) then yields 

~b(2 - sk) = __1~[ 01(sk - sj - 2) (U.14) 
~(s~) /~= O~(s~-sj+,~) 

for k = 1,..., n. 
The eigenvalues are given by 

V(u)=O(,~-u) (I O~(u-sj+.~) ~-~(u) (1 Ol(u-sj-,t) (B.15) 
s=~ O~(u-sj) j=l~ Ol(U-Ss) 

T]hese equations can in turn be written in the form 

V(u) Q(u) = ~b(2 - u) Q(u + 2) + ~b(u) Q(u - 2) (B.16) 

where 

Q(u)=  I'5[ O~(u-sj)  (B.17) 
j = l  

The functions Q(u) and ~b(u) obey the quasiperiodicity conditions 

Q(u + re) = ( - 1)" Q(u) (B.18) 

Q(u + re'c)= ( - -p- le-2i")n  Q(u) 12~ e 2i~ (B.19) 
j =  1 

0(U "t- TO) = ( - -  1) u ~(b/) (B.20) 

~b(u + n'c) = ( - p - ' e - 2 ~ " )  N O(u) (B.21) 

which are consistent with the conditions (B.3) and (B.4). 

A P P E N D I X  C. PROOF OF S O M E  T Y P I C A L  IDENTIT IES 

In this Appendix we give some details of the calculation of the sim- 
plified forms for the expressions V(ot)(z) and V(or)(z) in (3.20) and (3.21). 

For the functions defined in (3.8), we begin by noting that 

zk 
N -~ log A ( z ) =  - k(1 - x  2Lk) (C . l )  

k=l  

N -~ log B = -  ,.., (C.2) 
k=l  
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Consider first the expression for V(ol)(z). Using the above results, we expand 
- N  -1 log V(ot~(z) and collect the terms which go as zk: 

_ l 
k = l  k(l m=0 

--  ~ zk 

- -k=lk( l__x2Lk)( l__xgsk)  [xaSk--xS"k + x(2L s)k--x(ZL+')k] (C.3) 

These in turn can be written as 
Wk(X2Sk + x2(L-s)k) 

k = 1 ~ f - -  x ~ ) - ~  +---~) (C.4) 

where we have also made the substitution w = xSz. In a similar manner the 
Z-k terms are given by 

X 2Lk 

k = l  m=O 
(c.5) 

x2Lk 
= E f x  sk--xSk-~x(3s--2L)k--x(5s--2L)k] (C.6) 

kZk(1-- x2Lk)(1-- X 4sk) 
k = l  

x2sk(x2sk _]_ x2(L s)k) 

- - k= 1 kwk( 1 -- x2Lk)( 1 + xZsk) (C.7) 

Finally we need to consider the constant term [i.e., the z ~ terms in (3.20)], 
where the expansion gives 

~ x2sk _~ x2(L-- s)k 

k=~L k(l_x2L~) (C.8) 

Adding the three contributions (C.4), (C.7), and (C.8) gives the result 
(3.22). The same result is obtained from V~or)(z) in (3.21) by similar 
arguments. 

In generalizing these arguments to more complicated identities, we 
also make use of the Taylor expansion of the elliptic function (2.10): 

logE(z, x ) =  - ~ zk+xX(1  + Z - h )  (C.9) 
k=l k(1 - -  X k ) 
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